Find all points of discontinuity of f, where f is defined as following:
f ( x ) = x + 3 , x ≤-3 - 2x , -3 < x < 3 6x + 2 , x ≥ 3
Find dydx, if y = cosxx + sinx 1x
y = cosx x + sinx 1xFor simplication, Let us consider y = A + B such that A = cosx xand B = sinx 1x Then, dydx = dAdx + dBdx .........(i)A = cosx x
Taking logarithms on both the sides, we have,
log A = x log ( cosx )
1AdAdx = ddx x log cosx ⇒ dAdx = Addx x log cosx = cosx x xddx log cosx +log cosx ddx x = cosx x x1cosx - sinx + log cosx 1 = cosx x - x tanx + log cosx ........(ii)Now, B = sinx 1x B = sinx 1x
Log B = 1x log sinx 1BdBdx = ddx 1x log sinx ⇒ dBdx = Bddx 1x log sinx = sinx 1x 1xddx log sinx +log sinx ddx 1x = sinx 1x 1x1sinx cosx +log sinx -1x2 = sinx 1x 1x cotx - -1x2 log sinx = sinx 1x x cotx -log sinx x2 .......(iii)
Now, on substituting (ii) and (iii) in (i) we get
dydx = cosx x - x tanx + log cosx + sinx 1x x cotx - log sinx x2
Find the value of ‘a’ for which the function f defined as
f ( x ) = a sin π2 ( x + 1 ), x ≤ 0tan x - sin x x3, x > 0
is continuous at x = 0.
Differentiate X x cos x + x2 + 1x2 - 1 w.r.t. x
If x = a θ - sin θ , y = 1 + cos θ , find d2ydx2
If cos x y = cos y x, find dydx.
If sin y = x sin (a + y), prove that dydx = sin2 a + ysin a.
If y = 3 cos ( log x ) + 4 sin ( log x ), show that
x2 d2ydx2 + x dydx + y = 0
If z = yxsinxy + cos1 + yx , then x∂z∂x is equal to
y∂z∂y
- y∂x∂y
2y∂z∂y
2y∂z∂x
18/e4
27/e2
9/e2