If sin y = x sin (a + y), prove that dydx =  

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

611.

Find all points of discontinuity of f, where f is defined as following:

f ( x ) =  x  + 3 ,   x -3                  - 2x       ,   -3 < x < 3           6x + 2   ,     x  3


612.

Find  dydx,  if  y =  cosxx +  sinx 1x


613.

Find the value of ‘a’ for which the function f defined as

f ( x ) =  a sin π2 ( x + 1 ),       x  0tan x - sin x x3,            x > 0 

is continuous at x = 0.


614.

Differentiate  X x cos x +  x2 + 1x2 - 1  w.r.t. x


Advertisement
615.

If   x = a  θ - sin θ ,   y =  1 + cos θ ,    find d2ydx2


616.

If  cos x y =  cos y x,  find  dydx.


Advertisement

617.

If sin y = x sin (a + y), prove that dydx =  sin2 a + ysin a.


We have,

sin y = x sin ( a + y )

 x = sin ysin ( a + y )

Differentiating the above function we have,

1 = sin ( a + y ) × cos y dydx - sin y × cos ( a + y ) dydxsin2 ( a + y ) sin2 ( a + y ) =  sin ( a + y ) × cos y -sin y × cos ( a + y ) dydx sin2 ( a + y )  sin ( a + y ) × cos y -sin y × cos ( a + y ) = dydx sin2 ( a + y )sin ( a + y - y ) = dydx sin2 ( a + y )sin a = dydx dydx =  sin2 ( a + y )sin a


Advertisement
618.

If  y = 3 cos ( log x ) + 4 sin ( log x ), show that

x2  d2ydx2 + x dydx + y = 0


Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

619.

If z = yxsinxy + cos1 + yx  , then xzx is equal to

  • yzy

  • - yxy

  • 2yzy

  • 2yzx


620. limit as straight n rightwards arrow infinity of space open parentheses fraction numerator left parenthesis straight n plus 1 right parenthesis left parenthesis straight n plus 2 right parenthesis....3 straight n over denominator straight n to the power of 2 straight n end exponent end fraction close parentheses to the power of 1 divided by straight n end exponent is equal to
  • 18/e4

  • 27/e2

  • 9/e2

  • 9/e2

303 Views

Advertisement