Find all points of discontinuity of f, where f is defined as following:
f ( x ) = x + 3 , x ≤-3 - 2x , -3 < x < 3 6x + 2 , x ≥ 3
Find dydx, if y = cosxx + sinx 1x
Find the value of ‘a’ for which the function f defined as
f ( x ) = a sin π2 ( x + 1 ), x ≤ 0tan x - sin x x3, x > 0
is continuous at x = 0.
Differentiate X x cos x + x2 + 1x2 - 1 w.r.t. x
If x = a θ - sin θ , y = 1 + cos θ , find d2ydx2
If cos x y = cos y x, find dydx.
If sin y = x sin (a + y), prove that dydx = sin2 a + ysin a.
If y = 3 cos ( log x ) + 4 sin ( log x ), show that
x2 d2ydx2 + x dydx + y = 0
It is given that, y = 3 cos ( log x ) + 4 sin ( log x )
Then,
dydx = 3 × ddx cos log x + 4 × ddx sin log x = 3 × - sin log x × ddx log x + 4 × cos log x × ddx log x = - 3 sin log xx + 4 cos log xx = 4 cos log x - 3 sin log xxd2ydx2 = ddx 4 cos ( log x ) - 3 sin ( log x )x
= x 4 cos ( log x ) - 3 sin ( log x ) ' - 4 cos ( log x ) - 3 sin ( log x ) x 'x2= x - 4 sin ( log x ) × ( log x )' - 3 cos ( log x ) × ( log x )' - 4 cos ( log x ) + 3 sin ( log x ) x2= - 4 sin ( log x ) - 3 cos ( log x ) - 4 cos ( log x ) + 3 sin ( log x ) x2= - sin ( log x ) - 7 cos ( log x )x2∴ x2 d2ydx2 + x dydx + y
= x2 - sin ( log x ) - 7 cos ( log x ) x2 + x 4 cos ( log x ) - 3 sin ( log x ) x + 3 cos ( log x ) + 4 sin ( log x )= - sin ( log x ) - 7 cos ( log x ) + 4 cos ( log x ) - 3 sin ( log x ) + 3 cos ( log x ) + 4 sin ( log x )= 0
Hence proved.
If z = yxsinxy + cos1 + yx , then x∂z∂x is equal to
y∂z∂y
- y∂x∂y
2y∂z∂y
2y∂z∂x
18/e4
27/e2
9/e2