equal to from Mathematics Continuity and Differentiability

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

621.

The area (in sq. units) of the regionopen curly brackets left parenthesis straight x comma straight y right parenthesis colon straight y squared space greater or equal than space 2 straight x space and space straight x squared space plus straight y squared space less or equal than 4 straight x comma space straight x space greater or equal than 0 comma space straight y greater or equal than 0 close curly brackets is

  • straight pi minus 4 over 3
  • straight pi minus 8 over 3
  • straight pi minus fraction numerator 4 square root of 2 over denominator 3 end fraction
  • straight pi minus fraction numerator 4 square root of 2 over denominator 3 end fraction
299 Views

622.

If a curve y=f(x) passes through the point (1, −1) and satisfies the differential equation, y(1+xy) dx=x dy, then f(-1/2) is equal to

  • -2/5

  • -4/5

  • 2/5

  • 2/5

424 Views

623.

If f and ga re differentiable  functions in (0,1) satisfying f(0) =2= g(1), g(0) = 0 and f(1) = 6, then for some c ε] 0,1[

  • 2f'(c) = g'(c)

  • 2f'(c) = 3g'(c)

  • f'(c) = g'(c)

  • f'(c) = g'(c)

149 Views

624.

The population p(t) at time t of a certain mouse species satisfies the differential equation fraction numerator dp space left parenthesis straight t right parenthesis over denominator dt end fraction space equals space 0.5 space left parenthesis straight t right parenthesis space minus 450. if p (0) = 850, then the  time at which the population becomes zero is

  • 2 log 18

  • log 9

  • 1 half space log space 18
  • 1 half space log space 18
493 Views

Advertisement
625.

Consider the function f(x) = |x – 2| + |x – 5|, x ∈ R.
Statement 1: f′(4) = 0
Statement 2: f is continuous in [2, 5], differentiable in (2, 5) and f(2) = f(5).

  • Statement 1 is false, statement 2 is true

  • Statement 1 is true, statement 2 is true; statement 2 is a correct explanation for statement 1

  • Statement 1 is true, statement 2 is true; statement 2 is not a correct explanation for statement 1

  • Statement 1 is true, statement 2 is true; statement 2 is not a correct explanation for statement 1

154 Views

Advertisement

626. fraction numerator straight d squared straight x over denominator dy squared end fraction equal to
  • open parentheses fraction numerator straight d squared straight x over denominator dy squared end fraction close parentheses to the power of negative 1 end exponent
  • negative open parentheses fraction numerator straight d squared straight y over denominator dx squared end fraction close parentheses to the power of negative 1 end exponent open parentheses dy over dx close parentheses to the power of negative 3 end exponent
  • open parentheses fraction numerator straight d squared straight y over denominator dx squared end fraction close parentheses open parentheses dy over dx close parentheses to the power of negative 2 end exponent
  • open parentheses fraction numerator straight d squared straight y over denominator dx squared end fraction close parentheses open parentheses dy over dx close parentheses to the power of negative 2 end exponent


D.

open parentheses fraction numerator straight d squared straight y over denominator dx squared end fraction close parentheses open parentheses dy over dx close parentheses to the power of negative 2 end exponent
dy over dx space equals space fraction numerator 1 over denominator begin display style dx over dy end style end fraction

fraction numerator straight d squared straight y over denominator dx squared end fraction space equals space straight d over dx open parentheses fraction numerator 1 over denominator dx divided by dy end fraction close parentheses space
equals space fraction numerator begin display style straight d end style over denominator begin display style dx end style end fraction open parentheses fraction numerator begin display style 1 end style over denominator begin display style dx divided by dy end style end fraction close parentheses. fraction numerator begin display style straight d end style over denominator begin display style dx end style end fraction
equals space minus space space fraction numerator begin display style 1 end style over denominator begin display style open parentheses dx over dy close parentheses squared end style end fraction. fraction numerator begin display style fraction numerator straight d squared straight x over denominator dy squared end fraction end style over denominator begin display style dx over dy end style end fraction
space equals space fraction numerator begin display style negative fraction numerator straight d squared straight x over denominator dy squared end fraction end style over denominator begin display style open parentheses dx over dy close parentheses cubed end style end fraction
equals negative open parentheses fraction numerator begin display style straight d squared straight x end style over denominator begin display style dy squared end style end fraction close parentheses open parentheses fraction numerator begin display style dy end style over denominator begin display style dx end style end fraction close parentheses cubed
167 Views

Advertisement
627.

The shortest distance between line y - x = 1 and curve x = y2 is

  • √3/4

  • 3√2 /8

  • 8/3√2

  • 8/3√2

349 Views

628. limit as straight x space rightwards arrow 2 of space open parentheses fraction numerator square root of 1 minus cos space open curly brackets 2 left parenthesis straight x minus 2 right parenthesis close curly brackets end root over denominator straight x minus 2 end fraction close parentheses
  • does not exist

  • equal square root of 2

  • equal negative square root of 2

  • equal negative square root of 2

153 Views

Advertisement
629.

Let f : R → R be a continuous function defined
by f(x) = 1/ex + 2e-x
Statement - 1: f(c) = 1/3, for some c ∈ R.
Statement-2: 0 < f(x)≤ fraction numerator 1 over denominator 2 square root of 2 end fraction, for all x ∈ R.

  • Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.

  • Statement-1 is true, Statement-2 is true; statement-2 is not a correct explanation for Statement-1.

  • Statement-1 is true, Statement-2 is false.

  • Statement-1 is true, Statement-2 is false.

134 Views

630.

The equation of the tangent to the curvestraight y equals straight x space plus space 4 over straight x squared, that is parallel to the x-axis, is

  • y = 0

  • y = 1

  • y = 3

  • y = 3

133 Views

Advertisement