Let f : R ➔ R be twice continuously differentiable. Let f(

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

641.

If i=19 (xi -5) = 9 and i = 19(xi - 5)2 = 45 then the
standard deviation of the 9 items x1, x2, ...., x9 is

  • 3

  • 9

  • 4

  • 2


642.

Let f(x) = xpsinx4, if 0 < x  π20              , if x = 0

(p, q  R). Then,  Lagrange's mean value theorem is applicable tof(x) in closed interval [ 0, x]

  • for all p, q

  • only when p > q

  • only when p < q

  • for no value of p, q


643.

limx0sinx2tanx is equal to

  • 2

  • 1

  • 0

  • does not exist


644.

Let for all x> 0, f(x)=limnnx1/n - 1, then

  • f(x) + f(1x) = 1

  • f(xy) = f(x) +f(y)

  • f(xy) = xf(y) +yf(x)

  • f(xy) = xf(x) + yf(y)


Advertisement
645.

The value of K in order that f (x) = sin(x) - cos(x) - Kx + 5 decreases for all positive real values of x is given by

  • K<1

  • K  1

  • K > 2

  • K < 2


Advertisement

646.

Let f : R ➔ R be twice continuously differentiable. Let f(0) = f(D) = f'(0) = 0. Then,

  • f''(x)  0 for all x

  • f''(c) = 0 for some c  R

  • f''(x)  0 if x  0

  • f'(x) > 0 for all x


B.

f''(c) = 0 for some c  R

Let function f(x) =x2(x - 1)

 f'(x) = 3x2 - 2x

and f''(x) = 6x - 2

Now, f(0) = f(1) = f'(0) = 0

Then, according to question,

at x = 13, f''(x) = 0

i.e. c = 13 for some c  R


Advertisement
647.

If f(x) =xn, n being a non-negative integer, then the values of n for which f'(α + β) = f'(α) + f'(β) for all α, β > 0 is

  • 1

  • 2

  • 0

  • 5


648.

If y = (1 + x)(1 + x2)(1 + x4)...(1 + x2n), then the value of dydx at x = 0 is

  • 0

  • - 1

  • 1

  • 2


Advertisement
649.

If f(x) is an odd differentiable function defined on - ,  such that f'(3) = 2, then f'(- 3) is equal to

  • 0

  • 1

  • 2

  • 4


650.

If f(x) = tan-1logex2logex2 + tan-13 + 2logx1 - 6logx

  • x2

  • x

  • 1

  • 0


Advertisement