If the functionfx = x2 - A + 2x&nbs

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

671.

Let y = 3x - 13x + 1sinx + loge1 + x, x > - 1. Then, at x = 0, dydx equals

  • 1

  • 0

  • - 1

  • - 2


672.

If f is a real-valued differentiable function such that f(x)f' (x) < 0 for all real x, then

  • f(x) must be an increasing function

  • f(x) must be a decreasing function

  • f(x) must be an increasing function

  • f(x) must be a decreasing function


673.

Rolle's theorem is applicable in the interval [- 2, 2] for the function

  • f(x) = x3

  • f(x) = 4x4

  • f(x) = 2x3 + 3

  • f(x) = πx


674.

The solution of 25d2ydx2 - 10dydx + y = 0, y(0) = 1, y(1) = 2e15 is

  • y = e5x + e- 5x

  • y = 1 + xe5x

  • y = 1 + xex5

  • y = 1 + xe- x5


Advertisement
675.

If f(x) and g(x) are twice differentiable functions on (0, 3) satisfying f"(x) = g''(c), f'(1) = 4g'(D) = 6, f(2) = 3, g(2) = 9, then f(1) - g(1) is

  • 4

  • - 4

  • 0

  • - 2


676.

For function f(x) = ecosx, Rolle's theorem is

  • applicable, when π2  x  3π2

  • applicable, when 0  x  π2

  • applicable, when 0  x  π

  • applicable, when π4  x  π2


677.

f(x) = 0,            x = 0x - 3,     x > 0 the function f(x) is

  • increasing when x  0

  • strictly increasing when x > 0

  • strictly increasing at x = 0

  • not continuous at x = 0 and so it is not increasing when x > 0


678.

The function f(ax) = ax + b is strictly increasing for all real x, if

  • a > 0

  • a < 0

  • a = 0

  •  0


Advertisement
679.

If y = 2x- 2x2 + 3x - 5, then for x = 2 and x = 0.1, value of y is

  • 2.002

  • 1.9

  • 0

  • 0.9


Advertisement

680.

If the function

fx = x2 - A + 2x + Ax - 2,       for x  22,                                         for x = 2

is continuous at x = 2, then

  • A = 0

  • A = 1

  • A = - 1

  • A = 2


A.

A = 0

Since, f(x) is continuous at x = 2

 LHL = f(2) limx2x2 - A + 2x + Ax - 2 = 2For existence of limitlimx2x2 - A + 2x + Ax - 2 00 4 - A + 22 + A = 0                            A = 0


Advertisement
Advertisement