The second order derivative of a sin3t with respec

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

681.

fx = x + - x,      when x  2λ,                       when x = 2

If f (x) is continuous at x = 2 then, the value of λ will be

  • - 1

  • 1

  • 0

  • 2


682.

For what values of x, the function f(x) = x4 - 4x3 + 4x2 + 40 is monotonic decreasing ?

  • 0 < x < 1

  • 1 < x < 2

  • 2 < x < 3

  • 4 < x < 5


683.

In which of the following functions, Rolle's theorem is applicable

  • f(x) = f(x) = x in - 2 x 2

  • fx = tanx in 0  x  π

  • fx = 1 + x - 223 in 1  x  3

  • fx = xx - 22 in 0  x  2


684.

If y = (1 + x)(1 + x2)(1 + x4)...(1 + x2n) then the value of dydxx = 0 is

  • 0

  • - 1

  • 1

  • 2


Advertisement
685.

f(x) = x + x is continuous for

  • x  - , 

  • x  - ,  - 0

  • only x > 0

  • no value of x


Advertisement

686.

The second order derivative of a sin3t with respect to cos3t at t = π4 is

  • 2

  • 112a

  • 423a

  • 3a42


C.

423a

Let y = asin3t, x = acos3t

On differentiating w.r.t. t, we get

     dydt = 3asin2tcost, dxdt = - 3acos3tsint dydx = 3asin2tcost- 3acos3tsint dydx = - sintcost - tant

Again, differentiating w.r.t. x, we get

     d2ydx2 = - sec2t . dtdx             = - sec2t- 3acos2tsint = 13acos4tsint d2ydx2t = π4 = 13a124 . 12                         = 253a = 423a


Advertisement
687.

If x2 + y2 = 1, then

  • yy'' - (2y')2 + 1 = 0

  • yy'' + (y')2 + 1 = 0

  • yy'' - (y')2 - 1 = 0

  • yy'' + 2(y')2 + 1 = 0


688.

The Rolle's theorem is applicable in the interval - 1  x  1 for the function

  • f(x) = x

  • f(x) = x2

  • f(x) = 2x3 + 3

  • f(x) = x


Advertisement

 Multiple Choice QuestionsShort Answer Type

689.

If x = sint, y = sin2t, prove that

1 - x2d2ydx2 - xdydx + 4y = 0


690.

If f is differentiable at x = a, find the value of

limxax2fa - a2fxx - a


Advertisement