If fx = 1 + sinxasinx,  - 

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

701.

If fx = ax2 - b,    a  x < 12,               x = 1x + 1,       1 < x  2 Then, the value of the pair (a, b) for which f(x) cannot be continuous at x = 1, is

  • (2, 0)

  • (1, - 1)

  • (4, 2)

  • (1, 1)


702.

Which of the following function is not differentiable at x = 1 ?

  • f(x) = tanx - 1 + x - 1

  • f(x) = sinx - 1 - x - 1

  • f(x) = x2 - 1x - 1x - 2

  • None of the above


703.

Using Rolle's theorem, the equation a0xn + a1xn - 1 + ... + an = 0 has atleast one root between 0 and 1, if 

  • a0n + a1n - 1 + ... + an - 1 = 0

  • a0n - 1 + a1n - 2 + ... + an - 2 = 0

  • na0 + (n - 1)a1 + ... + an - 1 = 0

  • a0n + 1 + a1n + ... + an = 0


704.

The value of cfrom the Lagrange's mean value theorem for which f(x) = 25 - x2 in [1, 5], is

  • 5

  • 1

  • 15

  • None of these


Advertisement
705.

Let f'(x), be differentiable a. If f(1) = - 2 and f'(x) 2  x [1, 6], then

  • f(6) < 8

  • f(6)  8

  • f(6)  5

  • f(6)  5


Advertisement

706.

If fx = 1 + sinxasinx,  - π6 < x < 0b,                                  x = 0etan2xtan3x,               0 < x < - π6

then the value of a and b, if f is continuous at x = 0, are respectively

  • 23, 32

  • 23, e23

  • 32, e32

  • None of these


B.

23, e23

fx = 1 + sinxasinx,  - π6 < x < 0b,                                  x = 0etan2xtan3x,               0 < x < - π6For f(x) to be continuous at x = 0limx0- fx = f0 = limx0+ fxlimx0-1 + sinxasinx            = elimx0-sinxasinx           = ea

Now,  limx0+etan2xtan3x = limx0+etan2x2x × 2x/tan3x3x × 3x= limx0+e23 = e23

Since, f (x) is continuous at x = 0

 ea = e23  a = 23and b = e23


Advertisement
707.

If f(x) = mx + 1,         x  π2sinx + n,     x > π2 is continuous at x = π2, then

  • m = 1, n = 0

  • m = 2 + 1

  • n = mπ2

  • m = n = π2


708.

If f(x) = x2,         x  02 sinx, x > 0, then x = 0 is

  • point of minima

  • point of maxima

  • point of discontinuity

  • None of the above


Advertisement
709.

If y = x + y + x + y + ... , then dydx is equal to

  • y + xy2 - 2x

  • y3 - x2y2 - 2xy - 1

  • y3 + x2y2 - x

  • None of these


710.

If f : R  R is defined by

fx = 2sinx - sin2x2xcosx, if x 0a, if x = 0,           if x = 0

then the value of a so that f is continuous at 0 is

  • 2

  • 1

  • - 1

  • 0


Advertisement