y = easin-1x ⇒ 1 - x2yn +

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

711.

y = easin-1x  1 - x2yn + 2 - 2n + 1xyn + 1 is equal to

  • - n2 + a2yn

  • n2 - a2yn

  • n2 + a2yn

  • - n2 - a2yn


C.

n2 + a2yn

Given, y = easin-1xOn differentiating w.r.t. x, we gety1 = easin-1x a . 11 - x2  y11 - x2 = ay 1 - x2y12 = a2y2Again, differentiating w.r.t. x, we get        1 - x22y1y2 - 2xy12 = a22yy1  1 - x2y2 - xy1 - a2y = 0

Using Leibnitz's rule,1 - x2yn + 2 + C1nyn +1- 2x + C2nyn- 2                         - xyn +1 - C1nyn - a2yn = 0 1 - x2yn + 2 + xyn + 1- 2n + 1                         + yn- nn - 1 - n - a2 = 0        1 - x2yn + 2 - 2n + 1xyn + 1 = n2 + a2yn


Advertisement
712.

The value of f(0) so that - ex + 2xx  may be continuous at x = 0 is

  • log12

  • 0

  • 4

  • - 1 + log2


713.

Let [ ] denotes the greatest integer function and f(x) = [tan2(x)] Then,

  • limx0fx does not exist

  • f(x) is continuous at x = 0

  • f(x) is not differentiable at x = 0

  • f(x) = 1


714.

If (x + y)sinu = x2y2, then xux + yuy is equal to

  • 1e

  • 12e

  • 1e2

  • 4e4


Advertisement
715.

If x = 2at1 + t3 and y = 2at21 + t32, then dydx is

  • ax

  • a2x2

  • xa

  • x2a


716.

If f(x) = logx3logex2, then f'(x) at x = e is

  • 13e1 - loge2

  • 13e1 + loge2

  • 13e- 1 + loge2

  • - 13e1 + loge2


717.

If f(x) = (x - 2)(x - 4)(x - 6) ... (x - 2n), then f'(2) is

  • (- 1)n2n - 1 (n - 1)!

  • (- 2)n - 1 (n - 1)!

  • (- 2)n n!

  • (- 1)n - 12n (n - 1)!


718.

If fx = 1 - cosxx, x  0k,                  x = 0  is continuous at x = 0, then the value of k is

  • 0

  • 1/2

  • 14

  • 12


Advertisement
719.

Let f(x)= sin(x), g(x) = x and h(x) = loge(x). If F(x) = (hogof)(x), then F"(x) is equal to

  • csc3x

  • 2cotx2 - 4x2csc2x2

  • 2xcotx2

  • - 2csc2x


720.

If y = tan-14x1 + 5x2 + tan-12 + 3x3 - 2x, then dydx is equal to

  • 51 + 25x2

  • 11 + 25x2

  • 0

  • 51 - 25x2


Advertisement