A differentiable function f(x) is defined for all x > 0 and sa

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

781.

If y = sinx + sinx + sinx + ... , then dydx is equal to :

  • cosx2y - 1

  • - cosx2y - 1

  • sinx1 - 2y

  • - sinx1 - 2y


782.

Given f(0) = 0 and f(x) = 11 - e- 1x for x  0. Then only one of the following statements on f (x) is true. That is f(x), is :

  • continuous at x = 0

  • not continuous at x = 0

  • both continuous and differentiable at x = 0

  • not defined at x = 0


783.

The value of f at x = 0 so that function fx = 2x - 2- xx, x  0.  is continuous at x = 0, is :

  • 0

  • log(2)

  • 4

  • log(4)


784.

If y = ax . b2x - 1, then d2ydx2 is :

  • y2 . logab2

  • y . logab2

  • y2

  • y . logab22


Advertisement
785.

The value of ddxtan-1x3 - x1 - 3x is

  • 121 + xx

  • 321 + xx

  • 21 + xx

  • 321 + xx


786.

The derivative of y = (1 - x)(2 - x) ... (n - x) at x = 1 is equal to :

  • 0

  • (- 1)(n - 1)!

  • n! - 1

  • (- 1)n - 1(n - 1)!


787.

Let f(x + y) = f(x)f(y) and f(x) = 1 + sin(3x) g(x), where g(x) is continuous, then f'(x) is : 

  • f(x)g(0)

  • 3g(0)

  • f(x)cos3x

  • 3f(x)g(0)


788.

Let f be continuous on [1, 5] and differentiable in (1, 5). If f (1) = - 3 and f'(x) 9 for all x  (1, 5), then

  • f5  33

  • f5  36

  • f5  36

  • f5  9


Advertisement
789.

Let f be twice differentiable function such that f"(x) = - f(x) and f'(x) = g(x), h(x) = {f(x)}2 + {g(x)}2. If h(5) = 11, then h(10) is equal to :

  • 22

  • 11

  • 0

  • 20


Advertisement

790.

A differentiable function f(x) is defined for all x > 0 and satisfies f(x3) = 4x4 for all x > 0. The value of f'(8) is :

  • 163

  • 323

  • 1623

  • 3223


B.

323

fx3 = 4x4  x > 0Let x3 = t  x = t13    ft = 4t43On differentiating w.r.t. t, we get        f't = 4 . 43t43 - 1 = 4 . 43t13 f'x3 = 163x313 = 163x f'8 = f'23 = 163 × 2 = 323


Advertisement
Advertisement