The set of points where the functton f(x) = xx is differentiable

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

861.

The distance (in metre) travelled by a vehicle in time t (in seconds) is given by the equation s = 3t3 + 2t2 + t + 1. The difference in the acceleration between t = 2 and t = 4 is

  • 36 m/s2

  • 38 m/s2

  • 45 m/s2

  • 46 m/s2


862.

If y2 = P(x) be a cubic polynomial, then 2ddxy3d2ydx2 is equal to

  • P'''(x) + P'(x)

  • P''(x)P'''(x)

  • P(x)P'''(x)

  • constant


Advertisement

863.

The set of points where the functton f(x) = xx is differentiable is

  • - , 

  • - , 0  0, 

  • 0, 

  • 0, 


A.

- , 

Wev have, fx = x2,      x  0- x2,  x < 0

Clearly, f(x)is differentiable for all x > 0 and for all x < 0. So, we check the differentiability at x = 0

Now, RHD at x = 0     = ddxx2x = 0 = 2xx = 0 = 0  LHD at x = a     = ddx- x2x = 0 = - 2xx = 0 = 0 LHD at x = 0 =  RHD at x = 0

So, f(x) is differentiable for all x i.e., the set of all points where f(x) is differentiable is - ,  i.e., R.


Advertisement
864.

If fx = 1 - sinxπ - 2x2 . logsinxlog1 + π2 - 4πx + 4x2, x  π2k                                                               , x = π2 is continuous at x = π2, then k is equal to

  • - 116

  • - 132

  • - 164

  • - 128


Advertisement
865.

The greatest value of f(x) = (x + 1)1/3 - (x - 1)1/3 on [0, 1] is

  • 1

  • 2

  • 3

  • 13


866.

If f(x) = xsin1x, x  0k           , x = 0 is continuous at x = 0, then the value of k will be

  • 1

  • - 1

  • 0

  • None of these


867.

If f(x) = xpcos1x, x  00             , x = 0 is differentiable at x = 0, then

  • p < 0

  • 0 < p < 1

  • p = 1

  • p > 1


868.

Let f(x) = 51x, x < 0λx, x  0 and λ  R, then at x = 0

  • f is discontinuous

  • f is continuous only, if λ = 0

  • f is continuous only, whatever λ maybe

  • None of the above


Advertisement
869.

If function fx = x,         if x is rational1 - x, if x is irrational, then the number of points at which f(x) is continuous, is

  • 1

  • 0

  • None of these


870.

If xmyn = (x + y)m + n, then dydx is

  • x +yxy

  • xy

  • xy

  • yx


Advertisement