The value of limx→11 - x . tanπx2 will be
π2
2π
π
Let f(x) = x2 - 4x + 3x2 + 2x - 3, x ≠ 1k , x = 1 If f(x) is continuous at x = 1, then the value of k will be
1
12
- 1
- 12
Let f(x) = xn . sin1x, x ≠ 00 , x = 0 Then, f(x) is differentiable at x = 0, if
n ∈ 0, 1
n ∈ 1, 2
n ∈ 1, ∞
n ∈ - ∞, ∞
In which interval the function fx = log105x - x24 is defined ?
[1, 4]
[0, 5)
(0, 1)
(- 1, ∞)
limx→0x . 2x - x1 - cosx equals
log2
12log2
2log2
None of these
Let f(2) = 4 and f'(2)= 1. Then, limx→2xf2 - 2fxx - 2 is given by
2
- 2
- 4
3
If y = logsinxtanx, then dydxπ4 is equal to
4log2
- 4log2
If y = logexx - 22 for x ≠ 0, 2, then y'(3) is equal to
13
23
43
sin-11 + x22x is
continuous but not differentiable at x = 1
differentiable at x = 1
neither continuous nor differentiable at x = 1
continuous everywhere
If x2 + y2 = atan-1yx, a > 0, then d2ydx2 at x = 0 is
0
2ae- π2
- 2ae- π2
D.
x2 + y2 = atan-1yx, a > 0 ...iPutting x = 0, we gety = atan-1∞y= aπ2Now, differentiating Eq. (i) w.r.t. x, we get2x + 2ydydx2x2 + y2 = a . 11 + y2x2 . xdydx - y . 1x2⇒ x + ydydxx2 + y2 = ax2x2 + y2xdydx - yx2⇒ x2 + y2x + ydydx = axdydx - y ...iiAt x = 0, y = aπ2, aπ2aπ2 . dydx = a- aπ2π2 . dydx = - 1⇒ dydx = - 2π
Again, differentiating Eq. (ii), w.r.t. x, we get2x + 2ydydx2x2 + y2 . x + ydydx + x2 + y21 + yd2ydx2 + dydx2 = axd2ydx2 + dydx - dydx⇒ x + ydydx2x2 + y2 + x2 + y21 + yd2ydx2 + dydx2 = axd2ydx2Putting x = 0, y = aπ2, dydx = - 2π
aπ2- 2π2 + aπ21 + aπ2d2ydx2 + - 2π2 = 0⇒ 2aπ + aπ2 + a2π24 . d2ydx2 + 4π2 . aπ2 = 0⇒ 4aπ + aπ2 + a2π24 . d2ydx2 = 0⇒ 4π + π2 + aπ24 . d2ydx2 = 0⇒ d2ydx2 = - 4π - π2aπ24 = - 28 + π2aπ3