If f(x) = sinπx2, if x < 13 -

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

991.

The number of points, where f(x) = [sin(x) + cos(x)] (where [] denotes the greatest integerfunction) and x  (0, 2) is not continuous, is

  • 3

  • 4

  • 5

  • 6


992.

limx22 -  2 + x21/3 - (4 - x)1/3  is equal to

  • 2 . 3-1/2

  • 3 . 2-4/3

  • - 3 . 24/3

  • None of the above


993.

If 2a + 3b + 6c = 0, then the equation ax2 + bx + c = 0 has atleast one real root in

  • (0, 1)

  • 0, 12

  • 14, 12

  • None of the above


Advertisement

994.

If f(x) = sinπx2, if x < 13 - 2x,   if x  1, then f(x) has

  • local minimum at x = 1

  • local maximum at x = 1

  • Both local maximum and local minimum at x = 1

  • None of the above


B.

local maximum at x = 1

Given function is,fx = sinπx2, if x < 13 - 2x,   if x  1 LHL and RHL of f(x) is 1, when x1and f1 = 3 - 2 = 1 f(x) is continuous at x = 1Now, graph of functlon f(x) is

From the above graph of function, we see tha tf(x) has local maxima at x = 1.


Advertisement
Advertisement
995.

Let f : R  R be a differentiable function and f(1) = 4. Then, the value of limx14fx2tx - 1dt is

  • 8f'(1)

  • 4f'(1)

  • 2f'(1)

  • f'(1)


996.

If f''(x) = - f(x) and g(x) = f'(x) anf F(x) = fx22 + x22 and given that F(5) = 5, then the value of F(10) is

  • 15

  • 0

  • 5

  • 10


997.

A function g defined for all real x > 0 satisfies g(1) = 1, g'(x2) = x3 for all x > 0, then value of g(4) is

  • 133

  • 3

  • 675

  • None of these


998.

A particle moving on a curve has the position at a time t is given by x = f'(t)sin(t) + f'(t)cos(t), y = f'(t)cos(t) - f'(t)sin(t), where f is a twice differentiable function. Then, the velocity of the particle at time t is

  • f'(t) + f''(t)

  • f'(t) - f''(t)

  • f'(t) + f'''(t)

  • f'(t) - f''(t)


Advertisement
999.

f(x) and g(x) are differentiable in the interval [0, 1] such that f(0) = 2, g(0) = 0, f(1) = 6, g(1) = 2, then Rolle's theorem is applicable for which of the following in [0, 1] ?

  • f(x) - g(x)

  • f(x) - 2g(x)

  • f(x) + 3g(x)

  • None of the above


1000.

The positive root of equation x2 - 2x - 5 = 0 lies in the interval

  • {0, 1}

  • (1, 2)

  • (2, 3)

  • (3, 4)


Advertisement