If f(x) = 1 - 2sinxπ - 4x if x ≠ π4 a if x = π4is continuous at π4, then a is equal to :
4
2
1
14
If u = sin-1x2 + y2x + y then x∂u∂x + y∂u∂y is
sin(u)
tan(u)
cos(u)
cot(u)
If f(x, y) = cosx - 4ycosx + 4y, then ∂f∂xy = x2 is equal to
- 1
0
y = log1 + x1 - x14 - 12tan-1x, then dydx is equal to
x1 - x2
x21 - x4
x1 + x4
x1 - x4
x = cosθ, y = sin5θ ⇒ 1 - x2d2ydx2 - xdydx is equal to
- 5y
5y
25y
- 25y
If f : R → R is defined by fx = cos3x - cosxx2, for x ≠ 0 λ, for x = 0and if f is continuous at x = 0, then λ = ?
- 2
- 4
- 6
- 8
If f(2) = 4 and f'(2) = 1, thenlimx→2xf2 - 2fxx - 2 = ?
3
If y = sinlogex, then x2d2ydx2 + xdydx is equal to
y = sinlogex
coslogex
y2
- y
If z = sec-1x4 + y4 - 8x2y2x2 + y2, then x∂z∂y + y∂z∂y is equal to
cotz
2cotz
2tanz
2secz
If f : R → R is defined byf(x) = 2sinx - sin2x2xcosx, if x ≠ 0, a , if x = 0, then the value of a so that f is continuous at 0 is
B.
Given, f(x) = 2sinx - sin2x2xcosx, if x ≠ 0, a , if x = 0 Now, limx→0 f(x) = limx→02sinx - sin2x2xcosx 00 form = limx→02cosx - 2cos2x2(cosx - xsinx) = limx→0 2 - 221 - 0 = 0Since fx is continuous at x = 0∴ f(0) = limx→0fx ⇒ a = 0