The angle of intersection between the curves y2 + x2 = a22 and x2

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1061.

If y = tan-11 +a2x2 - 1ax, then 1 + a2x2y'' +2a2y' = ?

  • - 2a2

  • a2

  • 2a2

  • 0


1062.

If x2 + y2 = t +1t and x4 + y4 = t2 +1t2, then dydx = ?

  • -xy

  • -yx

  • x2y2

  • y2x2


1063.

If x = at2 and y = 2at, then d2ydx2 at t = 12 is

  • - 2a

  • 4a

  • 8a

  • - 4a


1064.

The equations x - y + 2z = 43x + y + 4z = 6x + y + z = 1 have

  • unique solution

  • infinitely many solutions

  • no solution

  • two solutions


Advertisement
1065.

The value (s) of x for which the function

f(x) = 1 - x, x < 1=1 - x2 - x, 1  x  23 - x, x > 2fails to be continuous is (are)

  • 1

  • 2

  • 3

  • all real numbers


1066.

If y = log2log2x, then dydx = ?

  • loge2xlogex

  • 1loge2xx

  • 1xlogexloge2

  • 1xlog2x2


Advertisement

1067.

The angle of intersection between the curves y2 + x2 = a22 and x2 - y2 = a2 is

  • π3

  • π4

  • π6

  • π12


B.

π4

Given, y2 + x2 = a22          ...iand x2 - y2  = a2                    ...iiOn solving eqs i and ii, we getx = a2 + 12, y = a2 - 12Now, y2 + x2 = a222ydydx1 + 2x = 0  dydx1 = - xy dydx1 =  - a2 + 12 a2 - 12= - 2 + 12 - 1and x2 - y2 = a2On differentiating

dydx2 = xy = 2 + 12 - 1Then, tanθ = dydx1 - dydx21 + dydx1 dydx2= - 2 + 12 - 1 - 2 + 12 - 11 + - 2 + 12 - 1 2 + 12 - 1 =  - 22 + 12 - 11 - 2 + 12 - 1= - 22 + 12 - 12 - 1 - 2 - 1=  - 22 - 1 - 2 = 1θ = tan-11 = π4


Advertisement
1068.

If the function fx = k1x - π2, x  πk2cosx, x > π is twice differentiable, then the ordered pair (k1, k2) is equal to 

  • 12, - 1

  • 12, 1

  • (1, 0)

  • (1, 1)


Advertisement

 Multiple Choice QuestionsShort Answer Type

1069.

Let f(x) = x, x2 for 10 < x < 10, where [t] denotes the greatest integer function. Then the number of points of discontinuity of f is equal to ____


1070.

Let f : R   R be defined asfx = x5sin1x + 5x2, x < 00, x = 0x5cos1x + λx2, x > 0The value of λ for which f''0 exists, is


Advertisement