Let the given points be A(7, 10), B(-2, 5) and C(3, -4), then
AB2 = (-2 - 7)2 + (5 - 10)2
⇒ AB2 = (-9)2 + (-5)2
⇒ AB2 = 81 + 25 = 106
BC2 = {3 - (-2)}2 + (-4 -5)2
⇒ BC2 = (3 + 2)2 + (-4 - 5)2
⇒ BC2 = (5)2 + (-9)2
⇒ BC2 = 25 + 81 = 106
and CA2 = (7 - 3)2 = {10 - (-4)}2
⇒ CA2 = (4)2 + (10 + 4)2
⇒ CA2 = (4)2 + (14)2 = 16 + 196 = 212
Now,
AB2 + BC2 = 106 + 106
⇒ AB2 + BC2 = 212 = CA2
∴ ∠B = 90°
[By converse of Pythagoras theorem]
and AB = BC
Hence, A, B and C are the vertices of isosceles right angle triangle.