The line joining the points (1, -2) and (-3, 4) is trisected. Fi

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

201. Show that (1, -1) is the centre of the circle circumscribing the triangle whose angular points are (4, 3), (-2, 3) and (6, -1).
763 Views

 Multiple Choice QuestionsShort Answer Type

202. If A(2, -1), B(3, 4), C(-2, 3) and D(-3, -2) be four points in a plane, show that ABCD is a rhombus but not a square.


228 Views

203. Show that the points (7, 10), (-2, 5) and (3, -4) are the vertices of an isosceles right triangle.
1273 Views

204. Show that A(-3, 2), B(-5, -5), C (2,-3) and D(4, 4) arc the vertices of a rhombus.
542 Views

Advertisement
205. Observe the graph given below and state whether triangle ABC is scalene, isosceles or equilateral. Justify your answer. Also find its area. 


474 Views

206. Find the values of x for which the distance between the point P(2, -3) and Q(x, 5) is 10 units. 
337 Views

207. Find a relation between x and y such thai the point P(x, y) is equidistant from the points A(2, 5) and B(-3, 7).
283 Views

208. If the distances of P (x, y) from the points A(3, 6) and B(-3, 4) are equal prove that 3x + y = 5 
154 Views

Advertisement
209. If the points A (4, 3) and B (x, 5) are on the circle with the centre O (2,3), find the value of x.


Fig. 7.28.
978 Views

 Multiple Choice QuestionsLong Answer Type

Advertisement

210. The line joining the points (1, -2) and (-3, 4) is trisected. Find the co-ordinates of the points of trisection. 


Case I.


Case I.Fig. 7.28A.Let the given points be A(3, -1) and B(-6, 5).Let P

Fig. 7.28A.
Let the given points be A(3, -1) and B(-6, 5).
Let P and Q be the points of trisection of AB.
Then,    AP = PQ = QB = 1
Thus ‘P’ divides AB in the ratio 1 : 2.
Here, we have x1 = 1,    y1 = -2
x2 = -3,    y2 = 4
and    m1 = 1    m2 = 2
∴ The co-ordinates of ‘P’ are given by

straight P space open square brackets fraction numerator straight m subscript 1 straight x subscript 2 plus straight m subscript 2 straight x subscript 1 over denominator straight m subscript 1 plus straight m subscript 2 end fraction comma space fraction numerator straight m subscript 1 straight y subscript 2 plus straight m subscript 2 straight y subscript 1 over denominator straight m subscript 1 straight m subscript 2 end fraction close square brackets
equals straight P space open square brackets fraction numerator 1 left parenthesis negative 3 right parenthesis plus 2 left parenthesis 1 right parenthesis over denominator 1 plus 2 end fraction comma space fraction numerator 1 left parenthesis 4 right parenthesis plus 2 left parenthesis negative 2 right parenthesis over denominator 1 plus 2 end fraction close square brackets
equals straight P space open square brackets fraction numerator negative 3 plus 2 over denominator 3 end fraction comma fraction numerator 4 minus 4 over denominator 3 end fraction close square brackets equals straight P open square brackets fraction numerator negative 1 over denominator 3 end fraction comma 0 close square brackets

Case II.


Case I.Fig. 7.28A.Let the given points be A(3, -1) and B(-6, 5).Let P

Fig. 7.29.
Now ‘Q’ divides AB in the ratio 2 : 1.
Here, we have x1 = 1,    y = -2
x2 = -3,    y2 = 4
and    m1 = 2    m2 = 1
∴ The co-ordinates of ‘Q’ are given by

straight Q space open square brackets fraction numerator straight m subscript 1 straight x subscript 2 plus straight m subscript 2 straight x subscript 1 over denominator straight m subscript 1 plus straight m subscript 2 end fraction comma fraction numerator straight m subscript 1 straight y subscript 2 plus straight m subscript 2 straight y subscript 1 over denominator straight m subscript 1 plus straight m subscript 2 end fraction close square brackets
equals space straight Q space open square brackets fraction numerator 2 left parenthesis negative 3 right parenthesis plus 1 left parenthesis 1 right parenthesis over denominator 2 plus 1 end fraction comma space fraction numerator 2 cross times left parenthesis 4 right parenthesis plus 1 left parenthesis negative 2 right parenthesis over denominator 2 plus 1 end fraction close square brackets
equals space straight Q open square brackets fraction numerator negative 6 plus 12 over denominator 3 end fraction comma space fraction numerator 8 minus 2 over denominator 3 end fraction close square brackets equals straight Q open square brackets fraction numerator negative 5 over denominator 3 end fraction comma space 2 close square brackets

Hence, the co-ordinates of the points of trisection are  
open parentheses fraction numerator negative 1 over denominator 3 end fraction comma space 0 close parentheses space and space open parentheses fraction numerator negative 5 over denominator 3 end fraction comma space 2 close parentheses

454 Views

Advertisement
Advertisement