If the point P(x, y) is equidistant from the points A(a + b, b �

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

361. Find the number of terms in the


straight A. space straight P. space colon space minus 1 comma space fraction numerator negative 5 over denominator 6 end fraction comma space fraction numerator negative 2 over denominator 3 end fraction comma space fraction numerator negative 1 over denominator 2 end fraction comma space..... comma space 10 over 3.
79 Views

362.

Two A .P’s have the same common difference. The first term of these is 3 and that of the order is 8. What is the difference between their

(i) 2nd terms (ii) 4th terms (iii) 10th terms (iv) 30th terms.

81 Views

363. The fourth term of an A .P. is equal to 3 times the first term and the 7th term exceeds twice the third term by 1. Find the 1st term of A .P.
71 Views

364. If eight times the 8th term of an A .P. is equal to 12 times the 12th term of the A .P., then find the 20th term.
98 Views

Advertisement
365.

Find :

(i) The 10th term of –40, –15, 10, 35,.........

(ii) The 9th term of  3 over 4 comma space 5 over 4 comma space 7 over 4 comma space 9 over 4 space.......

94 Views

366. If (n + 1), 3n and (4n + 2) are in A .P., find the value of ‘n’.
122 Views

367. The 51 st, 11 th and last terms of an A .P. arc 0, 8 and <pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php at line #57mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php line 57<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 57, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(57): mkdir('/home/config_ad...', 511)
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(110): com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre> respectively. Find the common difference and the number of terms.
98 Views

368.

Let P and Q be the points of trisection of the line segment joining the points A(2, -2) and B(-7, 4) such that P is nearer to A. Find the coordinates of P and Q.

8136 Views

Advertisement
369.

Prove that the points (3, 0), (6, 4) and (-1, 3) are the vertices of a right-angled isosceles triangle.

6944 Views

Advertisement

370.

If the point P(x, y) is equidistant from the points A(a + b, b – a) and B(a – b,a + b). Prove that bx = ay.


Given,

P(x, y) is equidistant from the points A(a + b, b – a) and B(a – b,a + b)
Since P is at equidistant
therefore,
AP=BP
Thus using section formula
square root of left square bracket straight x minus left parenthesis straight a plus straight b right parenthesis squared right square bracket plus left square bracket straight y minus left parenthesis straight b minus straight a right parenthesis squared right square bracket end root space equals space square root of left square bracket straight x minus left parenthesis straight a minus straight b right parenthesis right square bracket squared plus left square bracket straight y minus left parenthesis straight a plus straight b right parenthesis right square bracket squared end root
left square bracket straight x minus left parenthesis straight a plus straight b right parenthesis right square bracket squared plus left square bracket straight y minus left parenthesis straight b minus straight a right parenthesis right square bracket squared space equals left square bracket straight x minus left parenthesis straight a minus straight b right parenthesis right square bracket squared plus left square bracket straight y minus left parenthesis straight a plus straight b right parenthesis right square bracket squared
straight x squared minus 2 straight x left parenthesis straight a plus straight b right parenthesis plus left parenthesis straight a plus straight b right parenthesis squared plus straight y squared minus 2 straight y left parenthesis straight b minus straight a right parenthesis plus left parenthesis straight b minus straight a right parenthesis squared
equals straight x squared minus 2 straight x left parenthesis straight a minus straight b right parenthesis plus left parenthesis straight a minus straight b right parenthesis squared plus straight y squared minus 2 straight y left parenthesis straight a plus straight b right parenthesis plus left parenthesis straight a plus straight b right parenthesis squared
minus 2 straight x space left parenthesis straight a plus straight b right parenthesis minus 2 straight y space left parenthesis straight b minus straight a right parenthesis space equals negative 2 straight x space left parenthesis straight a minus straight b right parenthesis minus 2 straight y left parenthesis straight a plus straight b right parenthesis
ax plus bx plus by minus ay equals ax minus bx plus ay plus by
2 bx equals 2 ay
bx equals ay

Hence proved.

4390 Views

Advertisement
Advertisement