Prove that: from Mathematics Determinants

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

101.

Show that:
open vertical bar table row cell straight b plus straight c end cell cell space straight c plus straight a end cell cell space straight a plus straight b end cell row cell straight q plus straight r end cell cell space straight r plus straight p end cell cell space straight p plus straight q end cell row cell straight y plus straight z end cell cell space straight z plus straight x end cell cell space straight x plus straight y end cell end table close vertical bar space equals space 2 open vertical bar table row straight a cell space space space space straight b end cell cell space space straight c end cell row straight p cell space space space straight q end cell cell space space straight r end cell row straight x cell space space straight y end cell cell space space straight z end cell end table close vertical bar

73 Views

102.

Show that:
open vertical bar table row straight a cell space space straight b end cell cell space space straight c end cell row cell straight a plus 2 straight x end cell cell space straight b plus 2 straight y end cell cell space space space straight c plus 2 space straight z end cell row straight x straight y cell space straight z end cell end table close vertical bar space equals space 0


70 Views

103. Factorise the determinant:
open vertical bar table row 1 cell space space 1 end cell cell space space 1 end cell row straight a cell space space straight b end cell cell space straight c end cell row cell straight a squared end cell cell space space straight b squared end cell cell space space straight c squared end cell end table close vertical bar.
71 Views

 Multiple Choice QuestionsLong Answer Type

104.

Prove that:
open vertical bar table row 1 1 1 row cell straight a squared end cell cell straight b squared end cell cell straight c squared end cell row cell straight a cubed end cell cell straight b cubed end cell cell straight c cubed end cell end table close vertical bar space equals space left parenthesis straight a minus straight b right parenthesis thin space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space left parenthesis straight a space straight b space plus space straight b space straight c space plus space straight c space straight a right parenthesis.

71 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

105.

By using properties of determinants, show that:
open vertical bar table row 1 cell space space space space straight a end cell cell space space space straight a squared end cell row 1 cell space space space straight b end cell cell space space space straight b squared end cell row 1 cell space space straight c end cell cell space space space straight c squared end cell end table close vertical bar space equals space left parenthesis straight a minus straight b right parenthesis thin space left parenthesis straight b minus straight c right parenthesis space left parenthesis straight c minus straight a right parenthesis





78 Views

106.

Prove the following identities:
open vertical bar table row 1 cell space space space 1 end cell cell space space space 1 end cell row straight a cell space space straight b end cell cell space space space straight c end cell row cell straight a cubed end cell cell space space space straight b cubed end cell cell space space space straight c cubed end cell end table close vertical bar space equals space left parenthesis straight a minus straight b right parenthesis thin space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space left parenthesis straight a plus straight b plus straight c right parenthesis







74 Views

107.

Prove the following identities:
open vertical bar table row 1 cell space space space straight a end cell cell space space space straight a cubed end cell row 1 cell space space straight b end cell cell space space straight b cubed end cell row 1 cell space space straight c end cell cell space space straight c cubed end cell end table close vertical bar space equals space left parenthesis straight a minus straight b right parenthesis thin space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space left parenthesis straight a plus straight b plus straight c right parenthesis








91 Views

108.

Prove the following identities:
open vertical bar table row 1 cell space space space straight x end cell cell space space space straight x cubed end cell row 1 cell space space straight y end cell cell space space straight y cubed end cell row 1 cell space straight z end cell cell space space straight z cubed end cell end table close vertical bar space equals space left parenthesis straight x minus straight y right parenthesis thin space left parenthesis straight y minus straight z right parenthesis thin space left parenthesis straight z minus straight x right parenthesis thin space left parenthesis straight x plus straight y plus straight z right parenthesis









67 Views

Advertisement
109.

Using properties of determinants, prove that:
open vertical bar table row straight x cell space space space straight y end cell cell space space space straight z end cell row cell straight x squared end cell cell space space straight y squared end cell cell space space space straight z squared end cell row cell straight x cubed end cell cell space space straight y cubed end cell cell space space straight z cubed end cell end table close vertical bar space equals space space straight x space straight y space straight z space left parenthesis straight x minus straight y right parenthesis thin space left parenthesis straight y minus straight z right parenthesis thin space left parenthesis straight z minus straight x right parenthesis

71 Views

 Multiple Choice QuestionsLong Answer Type

Advertisement

110.

Prove that:
open vertical bar table row 1 cell space space 1 end cell cell space space 1 end cell row straight alpha cell space space straight beta end cell cell space straight gamma end cell row βγ cell space space γα end cell cell space space αβ end cell end table close vertical bar space equals space left parenthesis straight beta minus straight gamma right parenthesis thin space left parenthesis straight gamma minus straight alpha right parenthesis thin space left parenthesis straight alpha minus straight beta right parenthesis


Let increment space equals open vertical bar table row 1 cell space space 1 end cell cell space space 1 end cell row straight alpha cell space straight beta end cell cell space space straight gamma end cell row βγ cell space γα end cell cell space space αβ. end cell end table close vertical bar
            equals space 1 over αβγ open vertical bar table row straight alpha cell space straight beta end cell cell space space straight gamma end cell row cell straight alpha squared end cell cell space straight beta squared end cell cell space space straight gamma squared end cell row αβγ cell space αβγ end cell cell space αβγ end cell end table close vertical bar
                                                      open square brackets Multiplying space straight C subscript 1 comma space straight C subscript 2 comma space straight C subscript 3 comma space by space straight alpha comma space straight beta comma space straight gamma space respectively close square brackets
                 equals space αβγ over αβγ open vertical bar table row straight alpha cell space straight beta end cell cell space space space straight gamma end cell row cell straight alpha squared end cell cell space space straight beta squared end cell cell space space space straight gamma squared end cell row 1 1 cell space space 1 end cell end table close vertical bar comma space
                                                             taking space straight alpha space straight beta space straight gamma space common space from space third space row.
                   equals left parenthesis negative 1 right parenthesis squared space open vertical bar table row 1 cell space space 1 end cell cell space space 1 end cell row straight alpha cell space straight beta end cell cell space space straight gamma end cell row cell straight alpha squared end cell cell space space straight beta squared end cell cell space space straight gamma squared end cell end table close vertical bar
                                                               open square brackets because space space third space row space passes space over space two space rows close square brackets       

            equals space open vertical bar table row 1 cell space space space 1 end cell cell space space 1 end cell row straight alpha cell space space straight beta end cell cell space space straight gamma end cell row cell straight alpha squared end cell cell space space straight beta squared end cell cell space space straight gamma squared end cell end table close vertical bar
equals space open vertical bar table row 1 0 cell space 0 end cell row straight alpha cell space straight beta minus straight alpha end cell cell space space straight gamma minus straight alpha end cell row cell straight alpha squared end cell cell space space straight beta squared minus straight alpha squared end cell cell space space straight gamma squared minus straight alpha squared end cell end table close vertical bar comma space by space straight C subscript 2 minus straight C subscript 1 comma space space straight C subscript 3 minus straight C subscript 1
equals space open vertical bar table row cell straight beta minus straight alpha end cell cell straight gamma minus straight alpha end cell row cell left parenthesis straight beta minus straight alpha right parenthesis thin space left parenthesis straight beta plus straight alpha right parenthesis end cell cell left parenthesis straight gamma minus straight alpha right parenthesis space left parenthesis straight gamma plus straight alpha right parenthesis end cell end table close vertical bar comma space expanding space by space first space row
equals space left parenthesis straight beta minus straight alpha right parenthesis space left parenthesis straight gamma minus straight alpha right parenthesis space open vertical bar table row 1 cell space space space space space space space 1 end cell row cell straight beta plus straight alpha end cell cell space space space space space space space straight gamma plus straight alpha end cell end table close vertical bar
left square bracket Taking space straight beta minus straight alpha comma space straight gamma minus straight alpha space common space from space first space and space second space column space respectively right square bracket
space equals space left parenthesis straight beta minus straight alpha right parenthesis space left parenthesis straight gamma minus straight alpha right parenthesis thin space left parenthesis straight gamma plus straight alpha minus straight beta minus straight alpha right parenthesis space equals space left parenthesis straight beta minus straight alpha right parenthesis thin space left parenthesis straight gamma minus straight alpha right parenthesis thin space left parenthesis straight gamma minus straight beta right parenthesis
equals space left parenthesis straight alpha minus straight beta right parenthesis thin space left parenthesis straight beta minus straight gamma right parenthesis thin space left parenthesis straight gamma minus straight alpha right parenthesis.
         

72 Views

Advertisement
Advertisement