Prove that: from Mathematics Determinants

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

111.

Prove that:
open vertical bar table row 1 cell space straight a end cell cell space space bc end cell row 1 cell space straight b end cell cell space space ca end cell row 1 cell space straight c end cell cell space ab end cell end table close vertical bar space equals space left parenthesis straight a minus straight b right parenthesis thin space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis



70 Views

Advertisement

112.

Prove that:
open vertical bar table row 1 cell space space straight x end cell cell space space yz end cell row 1 cell space space straight y end cell cell space space zx end cell row 1 cell space straight z end cell cell space space xy end cell end table close vertical bar space equals space left parenthesis straight x minus straight y right parenthesis thin space left parenthesis straight y minus straight z right parenthesis thin space left parenthesis straight z minus straight x right parenthesis





Let increment space equals space open vertical bar table row 1 cell space space straight x end cell cell space yz end cell row 1 cell space straight y end cell cell space zx end cell row 1 cell space straight z end cell cell space xy end cell end table close vertical bar space equals space 1 over xyz space open vertical bar table row straight x cell space space straight x squared end cell cell space space xyz end cell row straight y cell space straight y squared end cell cell space space xyz end cell row straight z cell space straight z squared end cell cell space xyz end cell end table close vertical bar,
                                    by multiplying straight R subscript 1 comma space straight R subscript 2 comma space straight R subscript 3 space and space with space straight a comma space straight b comma space straight c space respectively.
    equals xyz over xyz open vertical bar table row straight x cell space space straight x squared end cell cell space 1 end cell row straight y cell space straight y squared end cell cell space 1 end cell row straight z cell space straight z squared end cell cell space 1 end cell end table close vertical bar
equals space open vertical bar table row 1 cell space space straight x end cell cell space space straight x squared end cell row 1 cell space space straight y end cell cell space space straight y squared end cell row 1 cell space space straight z end cell cell space space straight z squared end cell end table close vertical bar comma space space by space passing space straight R subscript 3 space over space two space rows.
equals space open vertical bar table row 1 cell space space space straight x end cell cell space space space space space space straight x squared end cell row 0 cell space space space straight y minus straight x end cell cell space space space space space space straight y squared minus straight x squared end cell row 0 cell space space straight z minus straight x end cell cell space space space space space straight z squared minus straight x squared end cell end table close vertical bar comma space space by space straight R subscript 2 minus straight R subscript 1 comma space straight R subscript 3 minus straight R subscript 1
equals space open vertical bar table row cell straight y minus straight x end cell cell space space space space space space space straight y squared minus straight x squared end cell row cell straight z minus straight x end cell cell space space space space space space straight z squared minus straight x squared end cell end table close vertical bar comma space by space expanding space with space straight C subscript 1
equals space left parenthesis straight y minus straight x right parenthesis thin space left parenthesis straight z minus straight x right parenthesis thin space open vertical bar table row 1 cell space space space straight y plus straight x end cell row 1 cell space space space straight z plus straight x end cell end table close vertical bar space equals space left parenthesis straight y minus straight x right parenthesis thin space left parenthesis straight z minus straight x right parenthesis thin space left parenthesis straight z plus straight x minus straight y minus straight x right parenthesis
equals space left parenthesis straight y minus straight x right parenthesis thin space left parenthesis straight z minus straight x right parenthesis thin space left parenthesis straight z minus straight y right parenthesis space equals space left parenthesis straight x minus straight y right parenthesis thin space left parenthesis straight y minus straight z right parenthesis thin space left parenthesis straight z minus straight x right parenthesis.
              

93 Views

Advertisement
113.

Prove that:
open vertical bar table row straight a straight b straight c row cell straight a squared end cell cell straight b squared end cell cell straight c squared end cell row bc ca ab end table close vertical bar space equals space left parenthesis ab plus bc plus ca right parenthesis thin space left parenthesis straight a minus straight b right parenthesis thin space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis





73 Views

 Multiple Choice QuestionsShort Answer Type

114.

Prove that:
open vertical bar table row straight a cell space space straight a squared end cell cell space space straight b plus straight c end cell row straight b cell space space straight b squared end cell cell space space straight c plus straight a end cell row straight c cell space straight c squared end cell cell space space straight a plus straight b end cell end table close vertical bar space equals space left parenthesis straight a plus straight b plus straight c right parenthesis thin space left parenthesis straight a minus straight b right parenthesis thin space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis

69 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

115.

Prove that:
open vertical bar table row straight alpha cell space space straight beta end cell cell space space space space straight gamma end cell row cell straight alpha squared end cell cell space space straight beta squared end cell cell space space space straight gamma squared end cell row cell straight beta plus straight gamma end cell cell space space space straight gamma plus straight alpha end cell cell space space space space straight alpha plus straight beta end cell end table close vertical bar space equals space left parenthesis straight beta minus straight gamma right parenthesis space left parenthesis straight gamma minus straight alpha right parenthesis thin space left parenthesis straight alpha minus straight beta right parenthesis thin space left parenthesis straight alpha plus straight beta plus straight gamma right parenthesis

62 Views

 Multiple Choice QuestionsShort Answer Type

116.

Show that:
open vertical bar table row 1 cell space space straight x end cell cell space space yz end cell row 1 cell space straight y end cell cell space space zx end cell row 1 cell space straight z end cell cell space space xy end cell end table close vertical bar space equals space open vertical bar table row 1 cell space space space straight x end cell cell space space straight x squared end cell row 1 cell space space straight y end cell cell space space straight y squared end cell row 1 cell space straight z end cell cell space space straight z squared end cell end table close vertical bar
and hence factorise.

77 Views

117.

Using the properties of determinants, show that:
open vertical bar table row 1 cell space space space straight x plus straight y end cell cell space space space straight x squared plus straight y squared end cell row 1 cell space straight y plus straight z end cell cell space space straight y squared plus straight z squared end cell row 1 cell space straight z plus straight x end cell cell space space straight z squared plus straight x squared end cell end table close vertical bar space equals space left parenthesis straight x minus straight y right parenthesis thin space left parenthesis straight y minus straight z right parenthesis thin space left parenthesis straight z minus straight x right parenthesis

89 Views

 Multiple Choice QuestionsLong Answer Type

118. Using properties of determinants, prove that
open vertical bar table row straight x cell space straight x squared end cell cell space yz end cell row straight y cell space straight y squared end cell cell space zx end cell row straight z cell space straight z squared end cell cell space xy end cell end table close vertical bar space equals space left parenthesis straight x minus straight y right parenthesis thin space left parenthesis straight y minus straight z right parenthesis thin space left parenthesis straight z minus straight x right parenthesis thin space left parenthesis xy plus yz plus zx right parenthesis

139 Views

Advertisement
119.

Prove that
open vertical bar table row cell straight a cubed plus 1 end cell cell space space space straight a squared end cell cell space space straight a end cell row cell straight b cubed plus 1 end cell cell space straight b squared end cell cell space space straight b end cell row cell straight c cubed plus 1 end cell cell straight c squared end cell cell space straight c end cell end table close vertical bar space equals space minus left parenthesis straight a minus straight b right parenthesis thin space left parenthesis straight b minus straight c right parenthesis thin space left parenthesis straight c minus straight a right parenthesis thin space left parenthesis straight a space straight b space straight c space plus space 1 right parenthesis.

72 Views

 Multiple Choice QuestionsShort Answer Type

120. If x = – 9 is a root of
open vertical bar table row straight x cell space space 3 end cell cell space space 7 end cell row 2 cell space space straight x end cell cell space space 2 end cell row 7 cell space 6 end cell cell space straight x end cell end table close vertical bar space equals 0 comma
find the other roots.
71 Views

Advertisement