If  show that  Hence find  from Mathematics Determinants

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

Advertisement

181.

If straight A space equals open square brackets table row 2 cell space space space minus 3 end cell row 3 cell space space space space space space 4 end cell end table close square brackets comma space show that straight A squared minus 6 straight A plus 17 space straight I space equals space straight O. Hence find straight A to the power of negative 1 end exponent.


straight A space equals space open square brackets table row 2 cell space space space minus 3 end cell row 3 cell space space space space space 4 end cell end table close square brackets
therefore space space space straight A squared space equals space open square brackets table row 2 cell space space minus 3 end cell row 3 cell space space space space space 4 end cell end table close square brackets space open square brackets table row 2 cell space space minus 3 end cell row 3 cell space space space space space space 4 end cell end table close square brackets space equals space open square brackets table row cell 4 minus 9 end cell cell space space space minus 6 minus 12 end cell row cell 6 plus 12 end cell cell negative 9 plus 16 end cell end table close square brackets space space equals space open square brackets table row cell negative 5 end cell cell space space minus 18 end cell row 18 cell space space space space space space 7 end cell end table close square brackets
therefore space space space straight A squared minus 6 straight A plus 17 space straight I space equals space open square brackets table row cell negative 5 end cell cell space space space minus 18 end cell row 18 cell space space space space space space space 7 end cell end table close square brackets space minus space 6 open square brackets table row 2 cell space space minus 3 end cell row 3 cell space space space space 4 end cell end table close square brackets space plus space 17 open square brackets table row 1 cell space space 0 end cell row 0 cell space space 1 end cell end table close square brackets
space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space space

                                  equals space open square brackets table row cell negative 5 end cell cell space space space space minus 18 end cell row 18 cell space space space space space space space 7 end cell end table close square brackets space plus space open square brackets table row cell negative 12 end cell cell space space space space space space 18 end cell row cell negative 18 end cell cell space space space minus 24 end cell end table close square brackets space plus space open square brackets table row 17 cell space space space 0 end cell row 0 cell space space space 17 end cell end table close square brackets
equals space open square brackets table row cell negative 5 minus 12 plus 17 end cell cell space space space space space minus 18 plus 18 plus 0 end cell row cell 18 minus 18 plus 0 end cell cell space space space space space space space space 7 minus 24 plus 17 end cell end table close square brackets space equals space open square brackets table row 0 cell space space space 0 end cell row 0 cell space space space space 0 end cell end table close square brackets

therefore space space space straight A squared minus 6 straight A space plus space 17 space straight I space equals space straight O space space space space space space rightwards double arrow space space space space 17 space straight I space equals space minus straight A squared plus 6 straight A
rightwards double arrow space space space space space 17 space straight I thin space straight A to the power of negative 1 end exponent space equals space minus straight A squared straight A to the power of negative 1 end exponent space plus space 6 straight A thin space straight A to the power of negative 1 end exponent space space space space space space rightwards double arrow space space space space space 17 space straight A to the power of negative 1 end exponent space equals space minus straight A space plus space 6 straight I
rightwards double arrow space space space space space 17 space straight A to the power of negative 1 end exponent space equals space minus open square brackets table row 2 cell space space space minus 3 end cell row 3 cell space space space space space 4 end cell end table close square brackets space plus space open square brackets table row 1 cell space space space 0 end cell row 0 cell space space space 1 end cell end table close square brackets space space space rightwards double arrow space space space 17 space straight A to the power of negative 1 end exponent space equals space open square brackets table row cell negative 2 end cell cell space space space space space space space space 3 end cell row cell negative 3 end cell cell space space space minus 4 end cell end table close square brackets space plus space open square brackets table row 6 cell space space space 0 end cell row 0 cell space space space 6 end cell end table close square brackets
rightwards double arrow space space space space space space 17 space straight A to the power of negative 1 end exponent space equals space open square brackets table row cell negative 2 plus 6 end cell cell space space space space space space 3 plus 0 end cell row cell negative 3 plus 0 end cell cell space space space minus 4 plus 6 end cell end table close square brackets space space space space space space rightwards double arrow space space space 17 space straight A to the power of negative 1 end exponent space equals space open square brackets table row 4 cell space space space space 3 end cell row cell negative 3 end cell cell space space space space 2 end cell end table close square brackets
rightwards double arrow space space space space space space space space straight A to the power of negative 1 end exponent space equals space 1 over 17 open square brackets table row 4 cell space space space space 3 end cell row cell negative 3 end cell cell space space space space 2 end cell end table close square brackets
84 Views

Advertisement
182.

For the matrix straight A space equals space open square brackets table row 2 cell space space space minus 1 end cell row 3 cell space space space space space space 2 end cell end table close square brackets comma show that A2 – 4 A + 7 I = O. Hence obtain A–1.

73 Views

 Multiple Choice QuestionsLong Answer Type

183.

Show that the matrix straight A space equals space open square brackets table row 2 cell space space space space space 3 end cell row 1 cell space space space space 2 end cell end table close square brackets satisfies the equation A2 – 4A + I = O and hence find A–1.

71 Views

184.

If straight A space equals space open square brackets table row cell space space 3 end cell cell space space space space 1 end cell row cell negative 1 end cell cell space space space space 2 end cell end table close square brackets comma  show that A2 – 5A + 7 I = O. Hence find A –1.

72 Views

Advertisement
185.

For the matrix straight A space equals space open square brackets table row 3 cell space space space 2 end cell row 1 cell space space space 1 end cell end table close square brackets comma find the numbers a and b such that A2 + aA + bI = O. Hence find A–1.

69 Views

 Multiple Choice QuestionsShort Answer Type

186. If A is square matrix such that A3 = I, prove that A is non-singular and find adj. A and prove that A–1 = A2.
94 Views

187. For the matrix straight A space equals space open square brackets table row 3 cell space space space space space space 1 end cell row 7 cell space space space space space 5 end cell end table close square brackets comma find x and y so that A2 + xI = yA. Hence find A–1 .
126 Views

 Multiple Choice QuestionsLong Answer Type

188.

If straight A space equals space open square brackets table row 1 cell space space space space space tanx end cell row cell negative tanx end cell cell space space space 1 end cell end table close square brackets comma space space space space then space straight A apostrophe straight A to the power of negative 1 end exponent space equals space open square brackets table row cell cos space 2 straight x end cell cell space space space space space minus sin space 2 straight x end cell row cell sin space 2 straight x end cell cell space space space space space space space space cos space 2 straight x end cell end table close square brackets

79 Views

Advertisement
189.

Find the inverse of the matrix straight A space equals space open square brackets table row straight a cell space space straight b end cell row straight c cell space space fraction numerator 1 plus bc over denominator straight a end fraction end cell end table close square brackets and show that a A -1 = (a2 + b c + 1) I – a A.

75 Views

190.

If straight A space equals space open square brackets table row 1 cell space space space space 3 end cell row 2 cell space space space space 7 end cell end table close square brackets space space and space straight B space equals space open square brackets table row 3 cell space space space space 4 end cell row 6 cell space space space space 2 end cell end table close square brackets comma
verify (AB)–1 = B –1 A–1

73 Views

Advertisement