Find the inverse of the matrix: from Mathematics Determinants

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

191.

If straight A space equals open square brackets table row 2 cell space space space space space space space 3 end cell row 1 cell space space minus 4 end cell end table close square brackets comma space straight B space equals space open square brackets table row cell space space space 1 end cell cell space space space space minus 2 end cell row cell negative 1 end cell cell space space space space space space 3 end cell end table close square brackets comma
verify that (AB)–1 = B–1 A–1

83 Views

192.

Let straight A space equals space open square brackets table row 3 cell space space space 7 end cell row 2 cell space space 5 end cell end table close square brackets space and space straight B space equals space open square brackets table row 6 cell space space 8 end cell row 7 cell space space 9 end cell end table close square brackets comma verify that (AB)–1 = B–1 A–1.

89 Views

193. Verify that (AB)–1 = B–1 A–1 for the matrices A and B where straight A space equals space open square brackets table row 3 cell space space 2 end cell row 7 cell space space 5 end cell end table close square brackets comma space space straight B space equals space open square brackets table row 4 cell space space 6 end cell row 3 cell space space 2 end cell end table close square brackets
74 Views

194. Verify that (AB)–1 = B–1 A–1 for the matrices A and B where straight A space equals open square brackets table row 3 cell space space 2 end cell row 7 cell space space 5 end cell end table close square brackets comma space space straight B space equals space open square brackets table row 6 cell space space space space 7 end cell row 8 cell space space space space 9 end cell end table close square brackets.

71 Views

Advertisement
195. Verify that (AB)–1 = B–1 A–1 for the matrices A and B where straight A space equals space open square brackets table row 2 cell space space space 1 end cell row 5 cell space space space 3 end cell end table close square brackets comma space space space straight B space equals space open square brackets table row 4 cell space space space 5 end cell row 3 cell space space 4 end cell end table close square brackets.

73 Views

 Multiple Choice QuestionsShort Answer Type

196.

Find (AB)–1 if straight A space equals space open square brackets table row 3 cell space 4 end cell row 1 cell space 1 end cell end table close square brackets comma space space straight B to the power of negative 1 end exponent space equals space open square brackets table row 4 cell space space 3 end cell row 2 cell space space 1 end cell end table close square brackets

73 Views

197.

Find (AB)–1 if straight A space equals space open square brackets table row 5 cell space space 0 end cell row 2 cell space space space 3 end cell end table close square brackets comma space space space straight B to the power of negative 1 end exponent space equals space open square brackets table row 1 cell space space space 2 end cell row 1 cell space space 4 end cell end table close square brackets

87 Views

 Multiple Choice QuestionsLong Answer Type

198.

Find the inverse of the matrix
straight A space equals space open square brackets table row cell negative 1 end cell cell space space 1 end cell cell space space 2 end cell row cell space space space 3 end cell cell negative 1 end cell cell space space 1 space end cell row cell space minus 1 end cell cell space space 3 end cell cell space 4 end cell end table close square brackets.

72 Views

Advertisement
Advertisement

199. Find the inverse of the matrix:
open square brackets table row 1 cell space space space minus 1 end cell cell space space space space space space 2 end cell row 0 cell space space space space space space 2 end cell cell space space space minus 3 end cell row 3 cell space space space minus 2 end cell cell space space space space space space 4 end cell end table close square brackets.


Let straight A space equals space open square brackets table row 1 cell space space minus 1 end cell cell space space space space space space 2 end cell row 0 cell space space space space space 2 end cell cell space space minus 3 end cell row 3 cell space space minus 2 end cell cell space space space space 4 end cell end table close square brackets

therefore space space space open vertical bar straight A close vertical bar space equals space open vertical bar table row 1 cell space space minus 1 end cell cell space space space space space space 2 end cell row 0 cell space space space space space 2 end cell cell space space minus 3 end cell row 3 cell space space space minus 2 end cell cell space space space space space 4 end cell end table close vertical bar space equals space 1 space open vertical bar table row cell space space 2 end cell cell space space minus 3 end cell row cell negative 2 end cell cell space space space space space 4 end cell end table close vertical bar minus left parenthesis negative 1 right parenthesis space open vertical bar table row 0 cell space space minus 3 end cell row 3 cell space space space space space 4 end cell end table close vertical bar space plus 2 space open vertical bar table row 0 cell space space space space space space 2 end cell row 3 cell space space minus 2 end cell end table close vertical bar
space space space space space space space space space space space space space space equals space 1 left parenthesis 8 minus 6 right parenthesis plus 1 left parenthesis 0 plus 9 right parenthesis plus 2 left parenthesis 0 minus 6 right parenthesis space equals space 2 plus 9 plus 12 space equals space minus 1 space not equal to space 0.
therefore space space space straight A to the power of negative 1 end exponent space exists.

Co-factors of the elements of first row of | A | are
open vertical bar table row cell space space 2 end cell cell space space space minus 3 end cell row cell negative 2 end cell cell space space space space space space 4 end cell end table close vertical bar comma space space space space space minus open vertical bar table row 0 cell space space space minus 3 end cell row 3 cell space space space space space space 4 end cell end table close vertical bar comma space space open vertical bar table row 0 cell space space space space space space space 2 end cell row 3 cell space space space minus 2 end cell end table close vertical bar
i.e. 2, –9, — 6 respectively.
Co-factors of the elements of second row of | A | are
negative open vertical bar table row cell negative 1 end cell cell space space space 2 end cell row cell negative 2 end cell cell space space 4 end cell end table close vertical bar comma space space space open vertical bar table row 1 cell space space space space space space space 2 end cell row 3 cell space space space space space space space 4 end cell end table close vertical bar comma space space space space minus open vertical bar table row 1 cell space space space space minus 1 end cell row 3 cell space space space space space minus space 2 end cell end table close vertical bar
i.e. 0, – 2, – 1 respectively.
Co-factors of the elements of third row of | A | are
open vertical bar table row cell negative 1 end cell cell space space space space space space space space 2 end cell row cell space 2 end cell cell space space space minus 3 end cell end table close vertical bar comma space space space space space minus open vertical bar table row 1 cell space space space space space space space 2 end cell row 0 cell space space space minus 3 end cell end table close vertical bar comma space space space space space open vertical bar table row 1 cell space space space minus 1 end cell row 0 cell space space space space space 2 end cell end table close vertical bar
i.e.   – 1, 3, 2 respectively.
therefore space space space adj. space straight A space equals space open square brackets table row 2 cell space space space minus 9 end cell cell space space space space minus 6 end cell row 0 cell space space minus 2 end cell cell space space space minus 1 end cell row cell negative 1 end cell cell space space space 3 end cell cell space space space space space space 2 end cell end table close square brackets space equals space open square brackets table row cell space space 2 end cell cell space space space space space space 0 end cell cell space space space minus 1 end cell row cell negative 9 end cell cell space space space minus 2 end cell cell space space space space 3 end cell row cell negative 6 end cell cell space space space minus 1 end cell cell space space space space 2 end cell end table close square brackets
therefore space space straight A to the power of negative 1 end exponent space equals space fraction numerator adj. space straight A over denominator open vertical bar straight A close vertical bar end fraction equals space fraction numerator 1 over denominator negative 1 end fraction space open square brackets table row cell space space space 2 end cell cell space space space space space space 0 end cell cell space space minus 1 end cell row cell negative 9 end cell cell space space space minus 2 end cell cell space space space space 3 end cell row cell negative 6 end cell cell space space space minus 1 end cell cell space space space space space 2 end cell end table close square brackets space equals space open square brackets table row cell negative 2 end cell cell space space space 0 end cell cell space space space space space 1 end cell row 9 cell space space 2 end cell cell space space minus 3 end cell row 6 cell space space space 1 end cell cell space space space minus 2 end cell end table close square brackets

74 Views

Advertisement
200.

If straight A space equals space open square brackets table row 0 cell space space space 0 end cell cell space space 1 end cell row 0 cell space space 1 end cell cell space space 0 end cell row 1 cell space space 0 end cell cell space space 0 end cell end table close square brackets comma show that  A–1 = A.

72 Views

Advertisement