If A is an invertible matrix of order 2, then det (A–1) is eq

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

221.

Compute (AB)1 where:
straight A space equals space open square brackets table row 1 cell space space space space 1 end cell cell space space space 2 end cell row 0 cell space space space 2 end cell cell space minus 3 end cell row 3 cell space minus 2 end cell cell space space space space 4 end cell end table close square brackets space space space space space space space straight B to the power of negative 1 end exponent space equals space open square brackets table row 1 cell space space space space space 2 end cell cell space space space space space 0 end cell row 0 cell space space space 3 end cell cell space space minus 1 end cell row 1 cell space space 0 end cell cell space space space space 2 end cell end table close square brackets

75 Views

222.

If straight A space equals space open square brackets table row 2 cell space space space 2 end cell cell space space space 1 end cell row cell negative 2 end cell cell space space space 1 end cell cell space space 2 end cell row 1 cell space minus 2 end cell cell space space 2 end cell end table close square brackets space space space and space straight B space equals space open square brackets table row 1 cell space space 3 end cell cell space space 2 end cell row 1 cell space space space 1 end cell cell space 1 end cell row 2 cell negative 3 end cell cell space 1 end cell end table close square brackets comma verify that (AB)–1 = B"–1 A–1.

75 Views

223.

If straight A to the power of negative 1 end exponent space equals space open square brackets table row 3 cell space space minus 1 end cell cell space space space space space 1 end cell row cell negative 15 end cell cell space space space space space 6 end cell cell space minus 5 end cell row 5 cell space minus 2 end cell cell space space space space 2 end cell end table close square brackets space space space and space straight B space equals space open square brackets table row cell space space space 1 end cell cell space space space space 2 end cell cell space space space minus 2 end cell row cell negative 1 end cell cell space space space space space 3 end cell cell space space space space space 0 end cell row cell space space 0 end cell cell space space minus 2 end cell cell space space space space space 1 end cell end table close square brackets comma find (AB)–1.

106 Views

 Multiple Choice QuestionsMultiple Choice Questions

224. Let A be a non-singular square matrix of order 3 × 3. Then | adj A| j is equal to
  • | A |
  • | A |2
  • | A |3
  • | A |3
108 Views

Advertisement
Advertisement

225.

If A is an invertible matrix of order 2, then det (A–1) is equal to

  • det (A)

  • fraction numerator 1 over denominator det space left parenthesis straight A right parenthesis end fraction
  • 1

  • 1


B.

fraction numerator 1 over denominator det space left parenthesis straight A right parenthesis end fraction

We know that
               AA to the power of negative 1 end exponent space equals space straight I
  therefore space space space space space open vertical bar AA to the power of negative 1 end exponent close vertical bar space equals space space open vertical bar straight I close vertical bar space space space space space space space space space space space space space space rightwards double arrow space space space space space left parenthesis straight A right parenthesis space open vertical bar straight A to the power of negative 1 end exponent close vertical bar space equals space straight I
therefore space space space space space open vertical bar straight A to the power of negative 1 end exponent close vertical bar space equals space fraction numerator 1 over denominator open vertical bar straight A close vertical bar end fraction
therefore space space space space left parenthesis straight B right parenthesis space is space correct space answer.

74 Views

Advertisement
226. If x, y, z are non-zero real numbers, then the inverse of matrix straight A space equals open square brackets table row straight x cell space space space space 0 end cell cell space space space 0 end cell row 0 cell space space space straight y end cell cell space space space 0 end cell row 0 cell space space space 0 end cell cell space space space straight z end cell end table close square brackets space is
  • open square brackets table row cell straight x to the power of negative 1 end exponent end cell cell space space 0 end cell cell space space 0 end cell row 0 cell space space straight y to the power of negative 1 space end exponent end cell cell space space 0 end cell row 0 0 cell space straight z to the power of negative 1 end exponent end cell end table close square brackets
  • xyz open square brackets table row cell straight x to the power of negative 1 end exponent end cell cell space space 0 end cell cell space space space 0 end cell row 0 cell space space straight y to the power of negative 1 end exponent space end cell cell space space 0 end cell row 0 0 cell space straight z to the power of negative 1 end exponent end cell end table close square brackets
  • 1 over xyz open square brackets table row straight x cell space space 0 end cell cell space space 0 end cell row 0 cell space straight y end cell cell space space 0 end cell row 0 cell space 0 end cell cell space space straight z end cell end table close square brackets
  • 1 over xyz open square brackets table row straight x cell space space 0 end cell cell space space 0 end cell row 0 cell space straight y end cell cell space space 0 end cell row 0 cell space 0 end cell cell space space straight z end cell end table close square brackets
80 Views

 Multiple Choice QuestionsShort Answer Type

227.

Examine the consistency of the system of equations:
x + 2y = 2
2x + 3y = 3 

83 Views

228.

Examine the consistency of the system of equations:
2x – y = 5
x + y = 4

75 Views

Advertisement
229.

Examine the consistency of the system of equations:
x + 3y = 5
2x + 6y = 8

98 Views

230.

Examine the consistency of the system of equations:
x+y+z = 1
2x + 3y + 2z = 2
ax+ay+2az = 4

75 Views

Advertisement