Use product to solve the system of equations x + 3z = 9,–x + 2

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

311.

For what values of k, the system of linear equations

x + y + z = 2
2x + y - z = 3
3x + 2y + kz = 4

has a unique solution?

1308 Views

 Multiple Choice QuestionsLong Answer Type

312.

Using properties of determinants, prove that

open vertical bar table row cell left parenthesis straight x plus straight y right parenthesis squared end cell zx zy row zx cell left parenthesis straight z plus straight y right parenthesis squared end cell xy row zy xy cell left parenthesis straight z plus straight x right parenthesis squared end cell end table close vertical bar space space equals space 2 xyz left parenthesis straight x plus straight y plus straight z right parenthesis cubed

1198 Views

 Multiple Choice QuestionsShort Answer Type

313.

Using the properties of determinants, solve the following for x:

open vertical bar table row cell straight x plus 2 end cell cell space space straight x plus 6 end cell cell space straight x minus 1 end cell row cell straight x plus 6 end cell cell straight x minus 1 end cell cell straight x plus 2 end cell row cell straight x minus 1 end cell cell straight x plus 2 end cell cell straight x plus 6 end cell end table close vertical bar space equals space 0

751 Views

314.

If open vertical bar table row cell 3 straight x end cell cell space 7 end cell row cell negative 2 end cell cell space 4 end cell end table close vertical bar space equals open vertical bar table row 8 cell space 7 end cell row 6 cell space 4 end cell end table close vertical bar comma find the value of x.

196 Views

Advertisement
315.

Use Properties of determinants, prove that:
open vertical bar table row cell 1 plus straight a end cell cell space 1 end cell cell space 1 end cell row 1 cell 1 plus straight b end cell 1 row 1 1 cell 1 plus straight c end cell end table close vertical bar space equals space abc plus bc plus ca plus ab

389 Views

316.

If open vertical bar table row cell straight x plus 1 end cell cell space space straight x minus 1 end cell row cell straight x minus 3 end cell cell space straight x plus 2 end cell end table close vertical bar space equals space open vertical bar table row 4 cell space space minus 1 end cell row 1 cell space space space space 3 end cell end table close vertical bar comma then write the value of x. 

193 Views

317.

Using properties of determinants prove the following:
open vertical bar table row 1 cell space space straight x end cell cell space space straight x squared end cell row cell straight x squared end cell cell space 1 end cell straight x row straight x cell space straight x end cell 1 end table close vertical bar space equals space left parenthesis 1 minus straight x cubed right parenthesis squared

247 Views

318.

Using properties of determinants, prove that 

594 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

Advertisement

319.

Use product open square brackets table row 1 cell negative 1 end cell 2 row 0 2 cell negative 3 end cell row 3 cell negative 2 end cell 4 end table close square brackets space space open square brackets table row cell negative 2 end cell 0 1 row 9 2 cell negative 3 end cell row 6 1 cell negative 2 end cell end table close square bracketsto solve the system of equations x + 3z = 9,
–x + 2y – 2z = 4, 2x – 3y + 4z = –3


straight A space equals open square brackets table row 1 cell negative 1 end cell 2 row 0 2 cell negative 3 end cell row 3 cell negative 2 end cell 4 end table close square brackets space straight B space equals space open square brackets table row cell negative 2 end cell 0 1 row 9 2 cell negative 3 end cell row 6 1 cell negative 2 end cell end table close square brackets
AxB space equals space open square brackets table row 1 cell negative 1 end cell 2 row 0 2 cell negative 3 end cell row 3 cell negative 2 end cell 4 end table close square brackets space open square brackets table row cell negative 2 end cell 0 1 row 9 2 cell negative 3 end cell row 6 1 cell negative 2 end cell end table close square brackets
space equals open square brackets table row cell negative 2 minus 9 plus 12 space end cell cell space 0 minus 2 plus 2 space end cell cell space 1 plus 3 minus 4 space end cell row cell 0 plus 18 minus 18 space end cell cell space 0 plus 4 minus 3 space end cell cell space 0 minus 6 plus 6 end cell row cell negative 6 minus 18 plus 24 space end cell cell space 0 minus 4 plus 4 space end cell cell space 3 plus 6 minus 8 end cell end table close square brackets
equals open square brackets table row 1 0 0 row 0 1 0 row 0 0 1 end table close square brackets

Since A X B = I,
therefore, B = A-1..... (i)
Now, the given system of equations is
x+3z =9
-x+2y-2z =4
2x-3y+4z = -3
This can also be represented as,
open square brackets table row 1 0 3 row cell negative 1 end cell 2 cell negative 2 end cell row 2 cell negative 3 end cell 4 end table close square brackets open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 9 row 4 row cell negative 3 end cell end table close square brackets
Here comma space we space can space observe space that space open square brackets table row 1 0 3 row cell negative 1 end cell 2 cell negative 2 end cell row 2 cell negative 3 end cell 4 end table close square brackets space equals space straight A to the power of straight T
So comma space straight A to the power of straight T space open square brackets table row straight x row straight y row straight z end table close square brackets space equals space open square brackets table row 9 row 4 row cell negative 3 end cell end table close square brackets
Multiply space the space above space expression space by space left parenthesis straight A to the power of straight T right parenthesis to the power of negative 1 end exponent
open square brackets table row straight x row straight y row straight z end table close square brackets space equals space left parenthesis straight A to the power of straight T right parenthesis to the power of negative 1 end exponent space open square brackets table row 9 row 4 row cell negative 3 end cell end table close square brackets
open square brackets table row straight x row straight y row straight z end table close square brackets space equals space left parenthesis straight A to the power of straight T right parenthesis to the power of negative 1 end exponent space open square brackets table row 9 row 4 row cell negative 3 end cell end table close square brackets
open square brackets table row straight x row straight y row straight z end table close square brackets space equals space left parenthesis straight B right parenthesis to the power of straight T space space space space space open square brackets table row 9 row 4 row cell negative 3 end cell end table close square brackets
equals open square brackets table row cell negative 2 end cell 0 1 row 9 2 cell negative 3 end cell row 6 1 cell negative 2 end cell end table close square brackets to the power of straight T open square brackets table row 9 row 4 row cell negative 3 end cell end table close square brackets
equals open square brackets table row cell negative 18 plus 36 minus 18 end cell row cell 0 plus 8 minus 3 end cell row cell 9 minus 12 plus 6 end cell end table close square brackets
equals open square brackets table row 0 row 5 row 3 end table close square brackets
Hence x=0 y=5 and =3

733 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

320.

Using properties of determinants, prove that

111+3x1+ 3y1111+3z1 = 9 (3xyz + xy + yz + zx)


Advertisement