Evaluate: a + ibc + id-c + ida - ib
Find the co-factor of a12 in the following:
2-3560415-7
Using properties of determinants, prove the following:
αβγα2β2γ2β + γ γ + α α + β = α - β β - γ γ - α α + β + γ
Write the value of the determinant 2 3 4 5 6 86x 9x 12x
Using properties of determinants prove the following:
a bca - b b - c c - ab + c c + a a + b = a3 + b3 + c3 - 3abc
∆ = a b ca - b b - c c - ab + c c + a a + bApplying C1 → C1 + C2+C3 ∆ = a + b + c b c0 b - c c - a2a + b + c c + a a + b∆ = a + b + c 1 b c0 b - c c - a2 c + a a + bR3 → R3 - 2R1∆ = a + b + c 1 b c 0 b - c c - a0 c + a - 2b a + b - 2c
Expanding along C1, We have,
∆= a + b + c b - c a + b - 2c - c - a c + a - 2b ⇒∆= a + b + c ba + b2 - 2bc - ca - cb + 2c2 c2 + ac - 2bc - ac - a2 + 2ab ⇒∆= a + b + c a2 + b2 + c2 - ca - bc - ab ⇒∆= a + b + c a2 + b2 + c2 - ab - bc - ac ⇒∆=a3 + b3 + c3 - 3abc = R.H.S.
Find the minor of the element of second row and third column ( a23 ) in the following determinant:
2 -3 56 0 41 5 -7
Using properties of determinants show the following:
b + c 2 ab caab a + c 2 bcac bc a + b 2 = 2abc ( a + b + c )3
Using properties of determinants, prove that
- a2 ab ac ba -b2 bc ca cb - c2 = 4 a2b2c2
Using matrix method, solve the following system of equations:
2x + 3y + 10z = 4, 4x - 6y + 5z, 6x + 9y - 20z; x, y, z ≠ 0
If ∆ = 5 3 8 2 0 1 1 2 3 , white the cofactor of the element a32.