A =  is a matrix satisfying the equation AAT = 9I, Where I is

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

331.

Using properties of determinants prove the following:

  1    1  1a    b ca3    b3  c3   =   a - b   b - c   c - a   a + b +c 


332.

Using matrices solve the following system of linear equations:

x - y + 2 z = 7

3 x + 4 y - 5 z = - 5

2 x - y + 3 z = 12


 Multiple Choice QuestionsMultiple Choice Questions

333.

If A = open square brackets table row cell 5 straight a end cell cell negative straight b end cell row 3 2 end table close square brackets and A adj A = AAT, then 5a +b is equal to

  • -1

  • 5

  • 4

  • 4

396 Views

334.

The system of linear equations x+λy−z=0; λx−y−z=0; x+y−λz=0 has a non-trivial solution for

  • infinitely many values of λ.

  • exactly one value of λ.

  • exactly two values of λ.

  • exactly two values of λ.

427 Views

Advertisement
Advertisement

335.

A = open square brackets table row 1 2 2 row 2 1 cell negative 2 end cell row straight a 2 straight b end table close square brackets is a matrix satisfying the equation AAT = 9I, Where I is 3 x 3 identity matrix, then the ordered pair (a,b) is equal to

  • (2,-1)

  • (-2,1)

  • (2,1)

  • (2,1)


D.

(2,1)

Given, 

straight A space equals space open square brackets table row 1 2 2 row 2 1 cell negative 2 end cell row straight a 2 straight b end table close square brackets
straight A to the power of straight T space equals space open square brackets table row 1 2 straight a row 2 1 cell negative 2 end cell row 2 cell negative 2 end cell straight b end table close square brackets
AA to the power of straight T space equals space open square brackets table row 1 2 2 row 2 1 cell negative 2 end cell row straight a 2 straight b end table close square brackets open square brackets table row 1 2 straight a row 2 1 cell negative 2 end cell row 2 cell negative 2 end cell straight b end table close square brackets
equals space open square brackets table row 9 0 cell straight a plus 4 plus 2 straight b end cell row 0 9 cell space 2 straight a plus 2 minus 2 straight b end cell row cell straight a plus 4 plus 2 straight b end cell cell space 2 straight a plus 2 minus 2 straight b end cell cell space straight a squared plus 4 plus straight b squared end cell end table close square brackets.

It is given that,

open square brackets table row 9 0 cell space space space straight a plus 4 plus 2 straight b end cell row 0 9 cell space space space space 2 straight a plus 2 minus 2 straight b end cell row cell straight a plus 4 plus 2 straight b end cell cell space space 2 straight a plus 2 minus 2 straight b end cell cell space space space space straight a squared plus 4 plus straight b squared end cell end table close square brackets space equals space 9 open square brackets table row 1 0 0 row 0 1 0 row 0 0 1 end table close square brackets

rightwards double arrow
open square brackets table row 9 0 cell space space space straight a plus 4 plus 2 straight b end cell row 0 9 cell space space space space 2 straight a plus 2 minus 2 straight b end cell row cell straight a plus 4 plus 2 straight b end cell cell space space 2 straight a plus 2 minus 2 straight b end cell cell space space space space straight a squared plus 4 plus straight b squared end cell end table close square brackets space equals space 9 open square brackets table row 9 0 0 row 0 9 0 row 0 0 9 end table close square brackets
On comparing we get,
a+ 4 +2b = 0
a+ 2b = -4   ... (i)
2a + 2-2b = 0
a-b= -1    ... (ii)
a2 + 4 +b2 = 9  ... (iii)
On solving eqs. (i) and (ii) we get
a = - 2, b = - 1
Hence, (a,b) ≡ (-2,-1)

459 Views

Advertisement
336.

The set of all values of λ for which the system of linear equations 

2x1-2x2+x3 = λx1
2x1- 3x2 + 2x3 = λx2
-x1 + 2x2 = λx3
a non- trivial solution.

  • is an empty set

  • is a singleton set

  • contains two elements

  • contains two elements

250 Views

337.

If α, β ≠ 0 and f(n) = αn+ βn and 

open vertical bar table row 3 cell 1 plus straight f left parenthesis 1 right parenthesis space space space space end cell cell 1 plus space straight f left parenthesis 2 right parenthesis end cell row cell 1 plus straight f left parenthesis 1 right parenthesis space space space space space end cell cell 1 plus straight f left parenthesis 2 right parenthesis space space space space space space end cell cell 1 plus straight f left parenthesis 3 right parenthesis end cell row cell 1 plus straight f left parenthesis 2 right parenthesis space space space end cell cell 1 plus straight f left parenthesis 3 right parenthesis space space space space space space space end cell cell 1 plus space straight f left parenthesis 4 right parenthesis end cell end table close vertical bar
= K(1-α)2(1-β)2(α- β)2, then K is equal to 

  • αβ 

  • 1/αβ 

  • 1

  • 1

180 Views

338.

If A is a 3x3 non- singular matrix such that AAT = ATA, then BBT is equal to

  • l +B
  • l
  • B-1

  • B-1

284 Views

Advertisement
339.

Let P and Q be 3 × 3 matrices with P ≠ Q. If P3= Qand P2Q = Q2P, then determinant of(P2+ Q2) is equal to

  • -2

  • 1

  • 0

  • 0

309 Views

340.

The number of values of k for which the linear equations
4x + ky + 2z = 0
kx + 4y + z = 0
2x + 2y + z = 0
posses a non-zero solution is:

  • 3

  • 2

  • 1

  • 1

171 Views

Advertisement