If f : 0, π/2 → R is&n

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

351.

If the system of linear equations
x + ky + 3z = 0
3x + ky – 2z = 0
2x + 4y – 3z = 0

has a non-zero solution (x,y,z), then xz/y2 is equal to

  • 30

  • -10

  • 10

  • -30


352.

If x-42x2x2xx-42x2x2xx-4 = (A +Bx)(x-A)2, then the ordered pair (A,B) is equal to

  • (4,5)

  • (-4,-5)

  • (-4,3)

  • (-4,5)


353.

Let A = x + 23x3x + 2, B = x05x + 2, Then all solutions of equation det(AB) = 0 is

  • 1, - 1, 0, 2

  • 1, 4, 0, - 2

  • 1, - 1, 4, 3

  • - 1, 4, 0, 3


354.

The value of det A, where

A = A = 1cosθ0- cosθ1cosθ- 1- cosθ1, lies

  • in the closed interval [1, 2]

  • in the closed interval [0, 1]

  • in the open interval (0, 1)

  • in the open interval (1, 2)


Advertisement
355.

The points (- a, - b), (a, b), (0, 0) and (a, ab), a  0, b  0 are always

  • collinear

  • vertices of a parallelogram

  • vertices of a rectangle

  • lie on a circle


356.

The number of distinct real roots of

sinxcosxcosxcosxsinxcosxcosxcosxsinx = 0 in the interval - π4 x  π4 is

  • 0

  • 2

  • 1

  • > 2


Advertisement

357.

If f : 0, π/2  R is defined asf(θ) = 1tanθ1- tanθ1tanθ- 1- tanθ1 Then, the range of f is

  • 2, 

  • (-, - 2]

  • [2, )

  • (- , 2]


A.

2, 

We have,

f(θ) = 1tanθ1- tanθ1tanθ- 1- tanθ1

= 1(1 + tan2θ) - tanθ- tanθ +tanθ + 1tan2θ + 1= 21 + tan2θ - 0= 2sec2θ Range of f = (2, )


Advertisement
358.

If a is an imaginary cube root of unity, then the value of the determinant

1 + ww2- w1 + w2w- w2w + w2w- w2 is

  • - 2w

  • - 3w2

  • - 1

  • 0


Advertisement
359.

Let n  2 be an integer,

A = cos2π/3sin2π/n0- sin2π/ncos2π/n0001 and I is the identity matrix of order 3. Then,

  • An = I and An - 1  I

  • Am  I for any positive integer m

  • A is not invertible 

  • Am = 0 for a positive integer m 


360.

The value of determinant

1 + a2 - b22ab- 2b2ab1 - a2 + b22a2b- 2a1 - a2 - b2 is

  • 0

  • (1 + a+ b2)

  • (1 + a2 + b2)2

  • (1 + a2 + b2)3


Advertisement