The number of real values of a for which the system of equationsx

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

361.

Consider the system of equations x + y + z = 0, αx + βy + γz = 0 and α2x + β2y + γ2z = 0. Then, the system of equations has

  • a unique solution for all values of α, β and γ

  • infinite number of solutions, if any two of α, β, γ are equal.

  • a unique solution, if α, β and γ are distinct

  • more than one, but finite number of solutions depending on values of α, β and γ


362.

If P = 121131, Q = PPT, then the value of the determinant of Q is

  • 2

  • - 2

  • 1

  • 0


363.

If P, Q and R are angles of PQR, then the value of

- 1cosRcosQcosR- 1cosPcosQcosP- 1 is equal to

  • - 1

  • 0

  • 12

  • 1


Advertisement

364.

The number of real values of a for which the system of equations

x + 3y + 5z = αx

5x + y + 3z = αy

3x + 5y + z = αz

has infinite number of solutions is

  • 1

  • 2

  • 4

  • 6


A.

1

The system of equations are

x + 3y + 5z = αx

5x + y + 3z = αy

3x + 5y + z = αz

 1 - αx + 3y + 5z = 0      ...(i) 5x + 1 - αy + 3z = 0      ...(ii) 3x + 5y + 1 - αz = 0      ...(iii)

For infinite number of solutions, we must have

      1 - α3551 - α3351 - α = 0 9 - α359 - α1 - α39 - α51 - α = 0,C1  C1 + C2 + C3Taking (9 -  α) common from the first column, we get        9 - α13511 - α3151 - α = 0 9 - α1351- α - 2- 202- α - 4 = 0

            9 - αα + 22- 2α + 4 = 0     9 - αα2 + 6α + 8 + 4 = 0           α - 9α2 + 6α + 12 = 0 α = 9 is the only real value of α.

Thus, system of equations has infinite number of solutions is  1


Advertisement
Advertisement
365.

If z = 11 + 2i- 5i1 - 2i- 35 +3i5i5 - 3i7, then i = - 1

  • z is purely real

  • z is purely imaginary

  • z + z¯ = 0

  • z - z¯


366.

If one of the cube roots of 1 be w then

11 + w2w21 - i- 1w2 - 1- i- 1 + w- 1 is equal to

  • w

  • i

  • 1

  • 0


367.

a - bb - cc - ab - cc - aa - bc - aa - bb - c is equal to

  • 0

  • - 1

  • 1

  • 2


368.

w is an imaginary cube root of unity and

x +w2w1ww21 +x1x +  ww2 = 0, then one of the value of x is

  • 1

  • 0

  • - 1

  • 2


Advertisement
369.

If A = 12- 4- 1, then A- 1 is

  • 17- 1- 241

  • 1712- 4- 1

  • 17- 1- 24- 1

  • does not exist


370.

Let w be the complex number cos2π3 + isin2π3 Then, the number of distinct complex number z satisfying

z + 1ww2wz + w21w21z + w = o is equal to

  • 1

  • 0

  • 2

  • 3


Advertisement