If A = logx- 1- logx2 and if det(A) = 2, then the value of x is equal to
2
e2
- 2
e
If sin2αcos2αcos2αsin2α = 0, α ∈ 0, π, then the value of α are
π2 and π12
π2 and π6
π4 and 3π4
π6 and π3
If A = axya and if xy = 1, then det (AAT) is equal to
a2 - 1
(a2 + 1)2
1 - a2
(a2 - 1)2
If A = xx - 12x1 and if det A = - 9, then the avlue of x are
32, - 3
- 23, 3
23, 3
- 32, 3
The value of the determinant sin236°cos236°cot135°sin253°cot135°cos253°cot135°cos225°cos265° is
- 1
0
1
If A = x1- x01- 1x07 and det(A) = 3012- 10067, then value of x is
- 3
3
- 8
The coefficient of x2 in the expansion of the determinnat x2x3 + 1x5 + 2x3 + 3x2 + xx3 + x4x + 4x3 + x423 is
- 10
- 6
A.
For the coefficient of x2, on expanding along R1, we get
∆ = x28x2 + 8x - x6 - 2x7 - x8 - x3 + 1 8x3 + 24 - x4 - x5 - 4x3 - 4x4 + x5 + 2 x6 + x7 + 3x3 + 3x4 - x3 - x2 - 4x2 - 4x = 8x4 + 8x3 - x8 - 2x9 - x10 - 8x6 - 24x3 + x7 + x8 + 4x6 + 4x7 - 8x3 - 24 + x4 + x5 + 4x3 + 4x4 + x11 + x12 + 3x8 + 3x9 - x8 - x7 - 4x7 - 4x6 + 2x6 + 2x7 + 6x3 + 6x4 - 2x3 - 2x2 - 8x2 - 8xCoefficient of x2 = - 2 - 8 = - 10
Let A = 1- 1 - i32- 1 + i321. Then A100 is equal to
2100A
299A
298A
A
If f(x) = xx2x312x3x2026x, then f'(x) is equal to
x3 + 6x2
6x3
3x
6x2
If A = 4kk0kk00k and det(A) = 256, then k equals
4
5
6
8