If A = x111x111x and B = x11x,

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

441.

If A(adj A) = 5I where I is the identity matnx of order 3, then  is equal to

  • 125

  • 25

  • 5

  • 10


442.

If A =  and B = c1c2c3a1a2a3b1b2b3, then

  • A = - B

  • A = B

  • B = 0

  • B = A2


443.

If A = 1234, then A-1 is equal to

  • - 124- 2- 31

  • 124- 2- 31

  • - 2413

  • 2413


444.

If A = 210021102, then adj is equal to

  • 0

  • 9

  • 19

  • 81


Advertisement
445.

If f(x) = sinxcosxtanxx3x2x2x1x, then limx0fxx2 is equal to

  • 0

  • 3

  • 2

  • 1


446.

Inverse of a diagonal non-singular matrix is

  • scalar matrix

  • skew symmetric matrix

  • zero matrix

  • diagonal matrix


447.

The characteristic equation of a matrix A is  λ3 - 5λ2 - 3λ + 2 = 0, then adj A is equal to

  • 9

  • 25

  • 12

  • 4


Advertisement

448.

If A = x111x111x and B = x11x, then dAdx is equal to

  • 3B + 1

  • 3B

  • - 3B

  • 1 - 3B


B.

3B

Given, A = x111x111x and B = x11x      A = xx2 - 1 - x - 1 + 1 - x      A = x3 - x - x + 1 + 1 - x     A = x3 - 3x + 2On differentiating w r.t x, we get     dAdx = 3x2 - 3      ...iAnd  B = x2 - 1 3B = 3x2 - 3     ...(ii)From Eqs (i) and (ii), we get  dAdx = 3B


Advertisement
Advertisement
449.

If the determinant of the adjoint of a (real) matrix of order 3 is 25, then the determinant of the inverse of the matrix is

  • 0.2

  • ± 5

  • 16255

  • ± 0.2


450.

If A is a matrix of order 3 such that A (adj A) = 10I, then adj A is equal to

  • 1

  • 10

  • 100

  • 10I


Advertisement