For problem given below, verify that the given function (implici

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

31. In the following, verify that the given functions, (explicit or implicit) is a solution of the corresponding differential equation:
y = cos x + C              :  y' + sinx = 0
                    
108 Views

32. In the following, verify that the given functions, (explicit or implicit) is a solution of the corresponding differential equation:
straight y space equals space square root of 1 plus straight x squared end root               :   straight y apostrophe space equals space fraction numerator xy over denominator 1 plus straight x squared end fraction
88 Views

33. In the following, verify that the given functions, (explicit or implicit) is a solution of the corresponding differential equation:
straight y space equals space straight x space sinx        :        xy apostrophe space equals space straight y plus straight x square root of straight x squared minus straight y squared end root   left parenthesis straight x not equal to 0 space and space straight x greater than straight y space or space straight x less than negative straight y right parenthesis
                                                         
85 Views

34. In the following, verify that the given functions, (explicit or implicit) is a solution of the corresponding differential equation:
xy space equals space log space straight y space plus space straight C                  colon space space straight y apostrophe space equals space fraction numerator straight y squared over denominator 1 minus straight x space straight y end fraction left parenthesis space xy not equal to 1 right parenthesis
                  
                                                         
112 Views

Advertisement
35. In the following, verify that the given functions, (explicit or implicit) is a solution of the corresponding differential equation:
straight y minus cos space straight y space equals space straight x  :         left parenthesis straight y space sin space straight y space plus space cos space straight y space plus space straight x right parenthesis space straight y apostrophe space equals space straight y                                          
96 Views

36.

In the following, verify that the given functions, (explicit or implicit) is a solution of the corresponding differential equation:

                                                  

81 Views

37. In the following, verify that the given functions, (explicit or implicit) is a solution of the corresponding differential equation:
straight y space equals space square root of straight a squared minus straight x squared end root space comma space straight x space element of space left parenthesis negative straight a comma space straight a right parenthesis space colon space space space space space space straight x plus straight y space dy over dx space equals space 0 space space space left parenthesis straight y not equal to 0 right parenthesis
                                                  
83 Views

Advertisement

38. For problem given below, verify that the given function (implicit or explicit) is a solution of the corresponding differential equation:
straight y space equals straight a space straight e to the power of straight x space plus space straight b space straight e to the power of negative straight x end exponent plus straight x squared         :           fraction numerator straight d squared straight y over denominator dx squared end fraction minus straight y plus straight x squared minus 2 space equals space 0


Here,                   straight y space equals space ae to the power of straight x plus be to the power of negative straight x end exponent plus straight x squared
therefore space space space space space space dy over dx space equals space ae to the power of straight x minus be to the power of negative straight x end exponent plus 2 straight x
therefore space space space space space fraction numerator straight d squared straight y over denominator dx squared end fraction space equals space ae to the power of straight x plus be to the power of negative straight x end exponent plus 2
therefore space space space straight L. straight H. straight S. space equals space fraction numerator straight d squared straight y over denominator dx squared end fraction minus straight y plus straight x squared minus 2
space space space space space space space space space space space space space space space space space space space equals straight a space straight e to the power of straight x plus be to the power of negative straight x end exponent plus 2 minus left parenthesis ae to the power of straight x plus be to the power of negative straight x end exponent plus straight x squared right parenthesis plus straight x squared minus 2
space space space space space space space space space space space space space space space space space space space space equals space ae to the power of straight x plus be to the power of negative straight x end exponent plus 2 minus ae to the power of straight x minus be to the power of negative straight x end exponent minus straight x squared plus straight x squared minus 2
space space space space space space space space space space space space space space space space space space space space space equals space 0 space space equals space straight R. straight H. straight S.
therefore space space space space space straight y space equals space straight a space straight e to the power of straight x plus be to the power of negative straight x end exponent plus straight x squared
is a solution of the given differential equation.

99 Views

Advertisement
Advertisement
39. For problem given below, verify that the given function (implicit or explicit) is a solution of the corresponding differential equation:straight y equals straight e to the power of straight x left parenthesis straight a space cosx space plus space straight b space sin space straight x right parenthesis space colon thin space fraction numerator straight d squared straight y over denominator dx squared end fraction minus 2 dy over dx plus 2 straight y space equals space 0
         
95 Views

40. For problem given below, verify that the given function (implicit or explicit) is a solution of the corresponding differential equation:
straight y space equals space straight x space sin space 3 straight x             :    fraction numerator straight d squared straight y over denominator dx squared end fraction plus 9 straight y minus 6 space cos space 3 straight x space equals space 0
         
90 Views

Advertisement