For problem given below, verify that the given function (implici

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

31. In the following, verify that the given functions, (explicit or implicit) is a solution of the corresponding differential equation:
y = cos x + C              :  y' + sinx = 0
                    
108 Views

32. In the following, verify that the given functions, (explicit or implicit) is a solution of the corresponding differential equation:
straight y space equals space square root of 1 plus straight x squared end root               :   straight y apostrophe space equals space fraction numerator xy over denominator 1 plus straight x squared end fraction
88 Views

33. In the following, verify that the given functions, (explicit or implicit) is a solution of the corresponding differential equation:
straight y space equals space straight x space sinx        :        xy apostrophe space equals space straight y plus straight x square root of straight x squared minus straight y squared end root   left parenthesis straight x not equal to 0 space and space straight x greater than straight y space or space straight x less than negative straight y right parenthesis
                                                         
85 Views

34. In the following, verify that the given functions, (explicit or implicit) is a solution of the corresponding differential equation:
xy space equals space log space straight y space plus space straight C                  colon space space straight y apostrophe space equals space fraction numerator straight y squared over denominator 1 minus straight x space straight y end fraction left parenthesis space xy not equal to 1 right parenthesis
                  
                                                         
112 Views

Advertisement
35. In the following, verify that the given functions, (explicit or implicit) is a solution of the corresponding differential equation:
straight y minus cos space straight y space equals space straight x  :         left parenthesis straight y space sin space straight y space plus space cos space straight y space plus space straight x right parenthesis space straight y apostrophe space equals space straight y                                          
96 Views

36.

In the following, verify that the given functions, (explicit or implicit) is a solution of the corresponding differential equation:

                                                  

81 Views

37. In the following, verify that the given functions, (explicit or implicit) is a solution of the corresponding differential equation:
straight y space equals space square root of straight a squared minus straight x squared end root space comma space straight x space element of space left parenthesis negative straight a comma space straight a right parenthesis space colon space space space space space space straight x plus straight y space dy over dx space equals space 0 space space space left parenthesis straight y not equal to 0 right parenthesis
                                                  
83 Views

38. For problem given below, verify that the given function (implicit or explicit) is a solution of the corresponding differential equation:
straight y space equals straight a space straight e to the power of straight x space plus space straight b space straight e to the power of negative straight x end exponent plus straight x squared         :           fraction numerator straight d squared straight y over denominator dx squared end fraction minus straight y plus straight x squared minus 2 space equals space 0
99 Views

Advertisement
Advertisement

39. For problem given below, verify that the given function (implicit or explicit) is a solution of the corresponding differential equation:straight y equals straight e to the power of straight x left parenthesis straight a space cosx space plus space straight b space sin space straight x right parenthesis space colon thin space fraction numerator straight d squared straight y over denominator dx squared end fraction minus 2 dy over dx plus 2 straight y space equals space 0
         


The given differential equation is
y = ex (a cos x + b sin x)
⇒    e–x y = a cos x + b sin x    ...(1)
Differentiating (1) twice w.r.t. .x. we get
                  straight e to the power of negative straight x end exponent dy over dx plus straight y space straight e to the power of negative straight x end exponent left parenthesis negative 1 right parenthesis space equals space minus straight a space sinx space plus space straight b space cosx
and        straight e to the power of negative straight x end exponent fraction numerator straight d squared straight y over denominator dx squared end fraction plus dy over dx straight e to the power of negative straight x end exponent left parenthesis negative 1 right parenthesis minus open curly brackets negative ye to the power of negative straight x end exponent plus straight e to the power of negative straight x end exponent dy over dx close curly brackets space equals space minus straight a space cosx space minus space straight b space sinx
or            straight e to the power of negative straight x end exponent fraction numerator straight d squared straight y over denominator dx squared end fraction minus 2 straight e to the power of negative straight x end exponent dy over dx plus straight y space straight e to the power of negative straight x end exponent space equals space minus straight y space straight e to the power of negative straight x end exponent                     [because space of space left parenthesis 1 right parenthesis]
or         straight e to the power of negative straight x end exponent fraction numerator straight d squared straight y over denominator dx squared end fraction minus 2 straight e to the power of negative straight x end exponent dy over dx plus 2 space straight y space straight e to the power of negative straight x end exponent space equals space 0 space space or space space straight e to the power of negative straight x end exponent open curly brackets fraction numerator straight d squared straight y over denominator dx squared end fraction minus 2 dy over dx plus 2 straight y close curly brackets space equals space 0
or            fraction numerator straight d squared straight y over denominator dx squared end fraction minus 2 dy over dx plus 2 straight y space equals space 0
Hence the result. 

95 Views

Advertisement
40. For problem given below, verify that the given function (implicit or explicit) is a solution of the corresponding differential equation:
straight y space equals space straight x space sin space 3 straight x             :    fraction numerator straight d squared straight y over denominator dx squared end fraction plus 9 straight y minus 6 space cos space 3 straight x space equals space 0
         
90 Views

Advertisement