Let y = yx be the solution of&

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

741.

If the surface area of a cube is increasing at a rate of 3.6 cm2/sec, retaining its shape; then the rate of change of its volume (in cm3/sec.), when the length of a side of the cube is 10 cm, is

  • 20

  • 10

  • 18

  • 9


742.

Let y = y(x) be the solution of the differential equation,  xy'  y = x2(xcosx + sinx), x > 0. If y(π) = π, then  y''π2 + yπ2 is equal to :

  • 1 + π2

  • 1 + π2 + π24

  • 2 + π2 +π24

  • 2 + π2


743.

If a + 2bcosxa - 2bcosy = a2 - b2, where a > b, then dxdy at π4, π4 is :

  • 2a + b2a - b

  • a + ba - b

  • a - ba + b

  • a - 2ba + 2b


 Multiple Choice QuestionsShort Answer Type

744.

Suppose a differentiable function f(x) satisfies the identity f(x + y) = f(x) + f(y) + xy2 + x2y, for all real x and y. If

limx0fxx = 1, then f'(3) is equal to :


Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

745.

The solution of the differential equation dydx - y + 3xlogey + 3x + 3 = 0 is(where C is a constant of integration)

  • x - 2logey + 3x = C

  • x - logey = 3x = C

  • y + 3x - 12logex2 = C

  • y - 12logey + 3x2 = C


746.

If y = y(x) is the solution of the differential equation 5 + ex2 + ydydx ex = 0 satisfyingy0 = 1, then a value of yloge13 is :

  •  - 1

  • 0

  • 2

  • 1


Advertisement

747.

Let y = yx be the solution of the differential equationcosxdydx + 2ysinx = sin2x, x  0, π2If yπ/3 = 0, then yπ/4 = ?

  • 12 - 1

  • 2 - 2

  • 2 - 2

  • 2 + 2


C.

2 - 2

dydx + 2tanx . y = 2sinxI.F. = e2tanxdx = sec2xsolution isy . sec2x =  2sinx . sec2x = 2secx = Cy . sec2x = 2secx + C0 = 2.2 + C  C = - 4y . sec2x = 2secx - 4y . π4 = 2 - 2


Advertisement
748.

If y = 2πx - 1csc(x) is the solution of the differential equation, dydx + pxy = 2πcscx, 0 < x < π2 then the function p(x) is equal to:

  • tanx

  • cscx

  • cotx

  • secx


Advertisement
749.

Let z = x + iy be a non-zero complex number such that z2 = i |z|2, where i =  - 1, then z lies on the:

  • real axis

  • line y = x

  • line y = - x

  • imaginary axis


Advertisement