Evaluate the following integral as the limit of a sum: from Mat

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

1.

Evaluate integral from 1 to 2 of straight x space dx as the limit of a sum.

932 Views

2. Evaluate the following definite integrals as limit of a sum.
integral from straight a to straight b of straight x space dx

742 Views

3. Evaluate the following definite integral as limit of a sum.
integral subscript 1 superscript 2 xdx



417 Views

4. Evaluate the following definite integral as limit of a sum.
integral subscript 0 superscript 5 left parenthesis straight x minus 1 right parenthesis dx


388 Views

Advertisement
Advertisement

5. Evaluate the following integral as the limit of a sum:
integral subscript 1 superscript 3 left parenthesis 2 straight x plus 3 right parenthesis dx


Comparing integral subscript 1 superscript 3 left parenthesis 2 straight x plus 3 right parenthesis dx space with space integral subscript straight a superscript straight b straight f left parenthesis straight x right parenthesis space dx comma we get
         f(x) = 2x +3 ,   a = 1,  b = 3
therefore    straight f left parenthesis straight a right parenthesis space equals space straight f left parenthesis 1 right parenthesis space equals space 2 plus 3 space equals space 5 comma space space straight f left parenthesis straight a plus straight h right parenthesis space equals space straight f left parenthesis 1 plus straight h right parenthesis space equals space 2 left parenthesis 1 plus straight h right parenthesis space plus space 3 space equals space 5 space plus space 2 straight h
         f(a+2h) = f(1+2h) = 2(1+2h)+3 = 5+4h
          ...     ...      ...        ...         ...          ...
        straight f left parenthesis straight a plus stack straight n minus 1 with bar on top straight h right parenthesis space equals space straight f left parenthesis 1 plus stack straight n minus 1 with bar on top straight h right parenthesis space equals space 2 open curly brackets 1 plus left parenthesis straight n minus 1 right parenthesis space straight h close curly brackets space plus 3 space equals space 5 plus 2 left parenthesis straight n minus 1 right parenthesis space straight h

Now, integral subscript straight a superscript straight b straight f left parenthesis straight x right parenthesis dx space equals space Lt with straight h rightwards arrow 0 below straight h space open square brackets straight f left parenthesis straight a right parenthesis plus straight f left parenthesis straight a plus straight h right parenthesis plus straight f left parenthesis straight a plus 2 straight h right parenthesis plus... plus straight f left parenthesis straight a plus top enclose straight n minus 1 end enclose space straight h right parenthesis close square brackets

rightwards double arrow space space space integral subscript 1 superscript 3 left parenthesis 2 straight x plus 3 right parenthesis dx space equals space Lt with straight h rightwards arrow 0 below straight h left square bracket 5 plus left parenthesis 5 plus 2 straight h right parenthesis plus left parenthesis 5 plus 4 straight h right parenthesis plus.... plus open curly brackets 5 plus 2 left parenthesis straight n minus 1 right parenthesis space straight h close curly brackets
                                  equals space Lt with straight h rightwards arrow 0 below space straight h left square bracket 5 straight n plus 2 straight h open curly brackets 1 plus 2 plus 3 plus.... plus left parenthesis straight n minus 1 right parenthesis close curly brackets right square bracket
equals space Lt with straight h rightwards arrow 0 below space straight h open square brackets 5 straight n plus 2 straight h fraction numerator left parenthesis straight n minus 1 right parenthesis space straight n over denominator 2 end fraction close square brackets space equals space Lt with straight h rightwards arrow 0 below open square brackets 5 space straight n space straight h space plus left parenthesis straight n space straight h right parenthesis space left parenthesis nh space minus straight h right parenthesis close square brackets
equals space Lt with straight h rightwards arrow 0 below space left square bracket space 5 space left parenthesis 2 right parenthesis space plus space left parenthesis 2 right parenthesis space left parenthesis 2 minus straight h right parenthesis right square bracket space space space space space space space space space space space space space space space space open square brackets because space straight n space straight h space space equals space straight b space minus straight a space equals space 3 space minus space 1 space equals space 2 close square brackets
space equals space 5 space left parenthesis 2 right parenthesis space plus space 2 left parenthesis 2 minus 0 right parenthesis space equals space 10 plus 4 space equals space 14

359 Views

Advertisement
6. Evaluate
integral subscript straight a superscript straight b straight x squared space dx  as the limit of sum.
232 Views

 Multiple Choice QuestionsLong Answer Type

7.

Evaluate  integral subscript 1 superscript 3 straight x squared space dx as the limit of a sum.

247 Views

8.

Evaluate integral subscript 1 superscript 4 left parenthesis straight x squared minus straight x right parenthesis space dx  as the limit of a sum.

252 Views

Advertisement
9.

Evaluate integral subscript 1 superscript 2 space left parenthesis 3 straight x squared plus 5 straight x right parenthesis space dx as limit of sums.

92 Views

10.

Evaluate integral subscript 1 superscript 3 space left parenthesis 3 straight x squared plus 2 straight x right parenthesis space dx as the limit of sums.

101 Views

Advertisement