Evaluate   as the limit of a sum. from Mathematics Integrals

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

1.

Evaluate integral from 1 to 2 of straight x space dx as the limit of a sum.

932 Views

2. Evaluate the following definite integrals as limit of a sum.
integral from straight a to straight b of straight x space dx

742 Views

3. Evaluate the following definite integral as limit of a sum.
integral subscript 1 superscript 2 xdx



417 Views

4. Evaluate the following definite integral as limit of a sum.
integral subscript 0 superscript 5 left parenthesis straight x minus 1 right parenthesis dx


388 Views

Advertisement
5. Evaluate the following integral as the limit of a sum:
integral subscript 1 superscript 3 left parenthesis 2 straight x plus 3 right parenthesis dx
359 Views

6. Evaluate
integral subscript straight a superscript straight b straight x squared space dx  as the limit of sum.
232 Views

 Multiple Choice QuestionsLong Answer Type

Advertisement

7.

Evaluate  integral subscript 1 superscript 3 straight x squared space dx as the limit of a sum.


Comparing integral subscript 1 superscript 3 straight x squared dx space with space integral subscript straight a superscript straight b straight f left parenthesis straight x right parenthesis space dx comma space space we space get
           straight f left parenthesis straight x right parenthesis space equals space straight x squared comma space space straight a space equals space 1 comma space space straight b space equals space 3
therefore space space space straight f left parenthesis straight a right parenthesis space equals space straight f left parenthesis 1 right parenthesis space equals space 1
space space space space space space straight f left parenthesis straight a plus straight h right parenthesis space equals space straight f left parenthesis 1 plus straight h right parenthesis space equals space left parenthesis 1 plus straight h right parenthesis squared
space space space space straight f left parenthesis straight a plus 2 straight h right parenthesis space equals space straight f left parenthesis 1 plus 2 straight h right parenthesis space equals space left parenthesis 1 plus 2 straight h right parenthesis squared
space space space straight f left parenthesis straight a plus stack straight n minus 1 with bar on top straight h right parenthesis space equals space straight f left parenthesis 1 plus stack straight n minus 1 with bar on top space straight h right parenthesis space equals space left parenthesis 1 plus stack straight n minus 1 with bar on top straight h right parenthesis squared
Now, integral subscript straight a superscript straight b straight f left parenthesis straight x right parenthesis space dx space equals space Lt with straight h rightwards arrow 0 below space straight h open square brackets straight f left parenthesis straight a right parenthesis plus straight f left parenthesis straight a plus straight h right parenthesis plus straight f left parenthesis straight a plus 2 straight h right parenthesis plus... plus straight f left parenthesis straight a plus stack straight n minus 1 with bar on top straight h close square brackets
where n h = b - a = 3 - 1 = 2
rightwards double arrow space space space integral subscript 1 superscript 3 straight x squared dx space equals space Lt with straight h rightwards arrow 0 below space straight h space open square brackets 1 plus left parenthesis 1 plus straight h right parenthesis squared plus left parenthesis 1 plus 2 straight h right parenthesis squared plus.... plus left parenthesis 1 plus stack straight n minus 1 with bar on top straight h right parenthesis squared close square brackets

       space equals space Lt with straight h rightwards arrow 0 below space straight h space left square bracket left parenthesis 1 plus 1 plus 1 plus...... space to space straight n space terms right parenthesis space plus space 2 space straight h space open curly brackets 1 plus 2 plus 3 plus... plus left parenthesis straight n minus 1 right parenthesis close curly brackets
                                                                    plus space straight h squared space open curly brackets 1 squared plus 2 squared plus 3 squared plus.... plus left parenthesis straight n minus 1 right parenthesis squared close curly brackets right square bracket

       equals space Lt with straight h rightwards arrow 0 below straight h open square brackets straight n plus 2 space straight h space fraction numerator left parenthesis straight n minus 1 right parenthesis straight n over denominator 2 end fraction plus straight h squared space fraction numerator left parenthesis straight n minus 1 right parenthesis space straight n space left parenthesis 2 straight n minus 1 right parenthesis over denominator 6 end fraction close square brackets
equals space Lt with straight h rightwards arrow 0 below space open square brackets space straight n space straight h space plus space left parenthesis straight n space straight h right parenthesis space left parenthesis straight n space straight h space minus space straight h right parenthesis plus fraction numerator left parenthesis space straight n space straight h right parenthesis space left parenthesis straight n space straight h space minus straight h right parenthesis space left parenthesis 2 space straight n space straight h space minus space straight h right parenthesis over denominator 6 end fraction space close square brackets

equals space Lt with straight h rightwards arrow 0 below open square brackets 2 plus left parenthesis 2 right parenthesis left parenthesis 2 minus straight h right parenthesis plus fraction numerator left parenthesis 2 right parenthesis space left parenthesis 2 minus straight h right parenthesis space left parenthesis 4 minus straight h right parenthesis over denominator 6 end fraction close square brackets space space space space space space open square brackets because space straight n space straight h space equals space 1 close square brackets
equals space 2 plus left parenthesis 2 right parenthesis space left parenthesis 2 minus 0 right parenthesis space plus fraction numerator left parenthesis 2 right parenthesis space left parenthesis 2 minus 0 right parenthesis space left parenthesis 4 minus 0 right parenthesis over denominator 6 end fraction space equals 2 plus 4 plus 8 over 3 space equals space 26 over 3

       

247 Views

Advertisement
8.

Evaluate integral subscript 1 superscript 4 left parenthesis straight x squared minus straight x right parenthesis space dx  as the limit of a sum.

252 Views

Advertisement
9.

Evaluate integral subscript 1 superscript 2 space left parenthesis 3 straight x squared plus 5 straight x right parenthesis space dx as limit of sums.

92 Views

10.

Evaluate integral subscript 1 superscript 3 space left parenthesis 3 straight x squared plus 2 straight x right parenthesis space dx as the limit of sums.

101 Views

Advertisement