Evaluate  as the limit of sum. from Mathematics Integrals

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

11.

Evaluate integral subscript 0 superscript 2 left parenthesis straight x squared plus straight x plus 2 right parenthesis space dx as the limit of a sum.

102 Views

12.

Evaluate integral subscript 0 superscript 2 left parenthesis straight x squared plus straight x plus 1 right parenthesis space dx as the limit of a sum.

104 Views

13.

Evaluate  integral subscript 1 superscript 3 left parenthesis straight x squared plus straight x right parenthesis space dx as the limit of sums. 

188 Views

 Multiple Choice QuestionsShort Answer Type

14.

Evaluate integral subscript 1 superscript 2 left parenthesis straight x squared plus straight x right parenthesis dx as the limit of a sum.

102 Views

Advertisement
Advertisement

15.

Evaluate integral subscript 0 superscript 2 left parenthesis straight x squared plus straight x right parenthesis space dx as the limit of sum.


Comparing integral subscript 1 superscript 2 left parenthesis straight x squared plus straight x right parenthesis space dx space with space integral subscript straight a superscript straight b straight f left parenthesis straight x right parenthesis space dx comma space space we space get
                     straight f left parenthesis straight x right parenthesis space equals space straight x squared plus straight x comma space space straight a space equals space 1 comma space space straight b space equals space 2
therefore                    f(a) = f(1) = 1+1
                      straight f left parenthesis straight a plus straight h right parenthesis space equals space straight f left parenthesis 1 plus straight h right parenthesis space equals space left parenthesis 1 plus straight h right parenthesis squared plus left parenthesis 1 plus straight h right parenthesis
straight f left parenthesis straight a plus 2 straight h right parenthesis space equals space straight f left parenthesis 1 plus 2 straight h right parenthesis space equals space left parenthesis 1 plus 2 straight h right parenthesis squared plus left parenthesis 1 plus 2 straight h right parenthesis
                     ................................................................................
                  straight f left parenthesis straight a plus stack straight n minus 1 with bar on top right parenthesis space equals space straight f left parenthesis 1 plus stack straight n minus 1 with bar on top space straight h right parenthesis space equals space left parenthesis 1 plus stack straight n minus 1 with bar on top space straight h right parenthesis squared space plus space left parenthesis 1 plus stack straight n minus 1 with bar on top space straight h right parenthesis
Now          integral subscript straight a superscript straight b straight f left parenthesis straight x right parenthesis space dx space equals space Lt with straight h rightwards arrow 0 below space straight h space left square bracket straight f left parenthesis straight a right parenthesis plus straight f left parenthesis straight a plus straight h right parenthesis plus straight f left parenthesis straight a plus 2 straight h right parenthesis plus.... plus straight f left parenthesis straight a plus stack straight n minus 1 with bar on top space straight h right parenthesis right square bracket
therefore space space space integral subscript 1 superscript 2 left parenthesis straight x squared plus straight x right parenthesis dx space equals space Lt with straight h rightwards arrow 0 below left square bracket left curly bracket 1 plus 1 right curly bracket space plus space left curly bracket left parenthesis 1 plus straight h right parenthesis right curly bracket space plus left curly bracket left parenthesis 1 plus 2 straight h right parenthesis squared plus left parenthesis 1 plus 2 straight h right parenthesis right curly bracket plus.....
                                                                                ..... plus left parenthesis 1 plus stack straight n minus 1 with bar on top space straight h right parenthesis squared plus left parenthesis 1 plus stack straight n minus 1 with bar on top space straight h right parenthesis right square bracket
                              equals space Lt with straight h rightwards arrow 0 below space straight h space open square brackets straight n plus 2 straight h fraction numerator left parenthesis straight n minus 1 right parenthesis straight n over denominator 2 end fraction plus straight h squared fraction numerator left parenthesis straight n minus 1 right parenthesis thin space left parenthesis straight n right parenthesis space left parenthesis 2 straight n minus 1 right parenthesis over denominator 6 end fraction plus straight n plus straight h fraction numerator left parenthesis straight n minus 1 right parenthesis space left parenthesis straight n right parenthesis over denominator 2 end fraction close square brackets
equals space Lt with straight h rightwards arrow 0 below space open square brackets straight n space straight h plus left parenthesis straight n space straight h space minus straight h right parenthesis space left parenthesis straight n space straight h right parenthesis space plus space fraction numerator left parenthesis straight n space straight h minus straight h right parenthesis space left parenthesis straight n space straight h right parenthesis space left parenthesis 2 space straight n space straight h minus straight h right parenthesis over denominator 6 end fraction plus space straight n space straight h space plus space fraction numerator left parenthesis space straight n space straight h space minus space straight h right parenthesis space left parenthesis straight n space straight h right parenthesis over denominator 2 end fraction close square brackets
                             equals space Lt with straight h rightwards arrow 0 below open square brackets 1 plus left parenthesis 1 minus straight h right parenthesis left parenthesis 1 right parenthesis plus fraction numerator left parenthesis 1 minus straight h right parenthesis left parenthesis 1 right parenthesis left parenthesis 2 minus straight h right parenthesis over denominator 6 end fraction plus 1 plus fraction numerator left parenthesis 1 minus straight h right parenthesis left parenthesis 1 right parenthesis over denominator 2 end fraction close square brackets
                                                                                                     open square brackets because space straight n space straight h space equals space straight b minus straight a space equals space 2 minus 1 space equals space 1 close square brackets
                             equals 1 plus left parenthesis 1 minus 0 right parenthesis space left parenthesis 1 right parenthesis space plus space fraction numerator left parenthesis 1 minus 0 right parenthesis space left parenthesis 1 right parenthesis thin space left parenthesis 2 minus 0 right parenthesis over denominator 6 end fraction plus 1 plus fraction numerator left parenthesis 1 minus 0 right parenthesis space left parenthesis 1 right parenthesis over denominator 2 end fraction
equals space 1 plus 1 plus 1 third plus 1 plus 1 half space equals 23 over 3

84 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

16.

Evaluate as limit of sums integral subscript 1 superscript 4 left parenthesis 5 straight x squared plus 3 straight x right parenthesis space dx.

86 Views

17.

Evaluate as limit of sums integral subscript 1 superscript 4 left parenthesis 3 straight x squared plus 2 straight x right parenthesis space dx.

92 Views

18.

Evaluate as limit of sums: integral subscript 1 superscript 3 left parenthesis 2 straight x squared plus 3 straight x right parenthesis space dx. space

179 Views

Advertisement
19. Evaluate the following integral as limit of a sum
integral subscript 0 superscript 2 left parenthesis straight x squared plus 3 right parenthesis space dx.
87 Views

20.

Evaluate the following integrals as the limit of a sum
integral subscript 0 superscript 2 left parenthesis straight x squared plus 1 right parenthesis space dx

95 Views

Advertisement