Prove the following: from Mathematics Integrals

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

71.

Evaluate the following:
integral subscript 0 superscript straight pi over 4 end superscript square root of 1 minus sin space 2 straight x end root dx

105 Views

Advertisement

72.

Prove the following:
integral subscript 0 superscript 1 open parentheses straight x space straight e to the power of straight x plus sin πx over 4 close parentheses dx space equals space 1 plus 4 over straight pi minus fraction numerator 2 square root of 2 over denominator straight pi end fraction


Let I = integral subscript 0 superscript 1 open parentheses xe to the power of straight x plus sin πx over 4 close parentheses space dx
       equals space integral subscript 0 superscript 1 straight x space straight e to the power of straight x space dx space plus space integral subscript 0 superscript 1 sin πx over 4 dx space equals space left square bracket straight x space straight e to the power of straight x right square bracket subscript 0 superscript 1 space minus space integral subscript 0 superscript 1 1. space straight e to the power of straight x dx plus open square brackets fraction numerator negative cos begin display style πx over 4 end style over denominator begin display style straight pi over 4 end style end fraction close square brackets subscript 0 superscript 1
       equals left square bracket straight x space straight e to the power of straight x right square bracket subscript 0 superscript 1 space minus space left square bracket straight e to the power of straight x right square bracket subscript 0 superscript 1 space minus space 4 over straight pi open square brackets cos fraction numerator straight pi space straight x over denominator 4 end fraction close square brackets subscript 0 superscript 1 space equals space left parenthesis straight e minus 0 right parenthesis minus left parenthesis straight e minus straight e to the power of 0 right parenthesis minus 4 over straight pi open square brackets cos straight pi over 4 minus cos space 0 close square brackets
equals space straight e minus straight e plus 1 minus 4 over straight pi open parentheses fraction numerator 1 over denominator square root of 2 end fraction minus 1 close parentheses space equals space 1 plus 4 over straight pi minus fraction numerator 2 square root of 2 over denominator straight pi end fraction

123 Views

Advertisement
73.

Prove the following:
integral subscript 0 superscript 1 straight x space straight e to the power of straight x space dx space equals space 1



109 Views

74.

Evaluate
integral subscript 0 superscript 1 open parentheses straight x space straight e to the power of straight x plus cos πx over 4 close parentheses dx

100 Views

Advertisement
75.

Evaluate
integral subscript 0 superscript 1 open parentheses xe to the power of 2 straight x end exponent plus sin πx over 2 close parentheses dx

115 Views

76.

Evaluate:
integral subscript straight pi over 2 end subscript superscript straight pi space straight e to the power of straight x open parentheses fraction numerator 1 minus sinx over denominator 1 minus cosx end fraction close parentheses dx



85 Views

77.

If integral subscript 0 superscript straight a 3 space straight x squared space dx space equals space 8.
find the value of a.

105 Views

78.

If integral subscript straight a superscript straight b straight x cubed dx space equals space 0 space and space if space integral subscript straight a superscript straight b straight x squared dx space equals space 2 over 3. find both a and b.

101 Views

Advertisement
79.

If f (x) is of the form f (x) = a+b x+cx2, show that
integral subscript 0 superscript 1 straight f left parenthesis straight x right parenthesis space dx space equals space 1 over 6 open curly brackets straight f left parenthesis 0 right parenthesis space plus space 4 space straight f space open parentheses 1 half close parentheses plus straight f left parenthesis 1 right parenthesis close curly brackets.

148 Views

80.

Prove the following:
integral subscript 0 superscript 1 sin to the power of negative 1 end exponent straight x space dx space equals space straight pi over 2 minus 1

104 Views

Advertisement