Evaluate  from Mathematics Integrals

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

101.

Evaluate the following integrals
integral subscript negative 1 end subscript superscript 1 space straight x cubed space left parenthesis straight x to the power of 4 plus 1 right parenthesis cubed space dx

92 Views

102.

Evaluate the following integrals
integral subscript 0 superscript 1 straight x square root of 1 minus straight x squared end root dx

93 Views

103.

Evaluate the following integrals:
integral subscript negative 1 end subscript superscript 1 fraction numerator 5 straight x over denominator left parenthesis 4 plus straight x squared right parenthesis squared end fraction dx



115 Views

104.

Evaluate the following integral:
integral subscript 0 superscript 1 fraction numerator 5 straight x over denominator left parenthesis 4 plus straight x squared right parenthesis squared end fraction dx



93 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

105.

Evaluate the following integral:
integral subscript 0 superscript 2 fraction numerator dx over denominator straight x plus 4 minus straight x squared end fraction



111 Views

 Multiple Choice QuestionsShort Answer Type

106. Evaluate the following integral:
integral subscript negative 1 end subscript superscript 1 fraction numerator dx over denominator straight x squared plus 2 straight x plus 5 end fraction
93 Views

107.

Evaluate integral subscript 0 superscript straight pi over 2 end superscript space square root of sin space straight ϕ end root space cos to the power of 5 straight ϕ space dϕ space

106 Views

 Multiple Choice QuestionsLong Answer Type

Advertisement

108.

Evaluate integral subscript 0 superscript 2 fraction numerator 5 straight x plus 1 over denominator straight x squared plus 4 end fraction dx.


Let I = integral subscript 0 superscript 2 fraction numerator 5 straight x plus 1 over denominator straight x squared plus 4 end fraction dx space equals space integral subscript 0 superscript 2 fraction numerator 5 straight x over denominator straight x squared plus 4 end fraction dx plus integral subscript 0 superscript 2 fraction numerator 1 over denominator straight x squared plus 4 end fraction dx

therefore                straight I space equals space straight I subscript 1 plus straight I subscript 2                                                          ...(1)
Put straight x squared plus 4 space equals space straight y comma space space space therefore space space 2 space straight x space dx space equals space dy space space space rightwards double arrow space space space straight x space dx space equals space 1 half dy
When x = 0, y = 0 + 4 = 4 When x = 2, y = 4 + 4 = 8
therefore      straight I subscript 1 space equals space 5 over 2 integral subscript 4 superscript 8 1 over straight y dy space equals space 5 over 2 open square brackets log space straight y close square brackets subscript 4 superscript 8 space equals space 5 over 2 left parenthesis log space 8 space minus space log space 4 right parenthesis space equals 5 over 2 log open parentheses 8 over 4 close parentheses space equals space 5 over 2 log space 2
            straight I subscript 2 space equals space integral subscript 0 superscript 2 fraction numerator 1 over denominator straight x squared plus 4 end fraction dx space equals space integral subscript 0 superscript 2 fraction numerator 1 over denominator straight x squared plus left parenthesis 2 right parenthesis squared end fraction dx
                   equals space 1 half open square brackets tan to the power of negative 1 end exponent open parentheses straight x over 2 close parentheses close square brackets subscript 0 superscript 2 space space equals space 1 half left square bracket tan to the power of negative 1 end exponent 1 minus tan to the power of negative 1 end exponent 0 right square bracket space equals space 1 half open square brackets straight pi over 4 minus 0 close square brackets space equals space straight pi over 8
therefore   from (1),  straight I space equals 5 over 2 log space 2 space plus space straight pi over 8

112 Views

Advertisement
Advertisement
109.

Prove that: integral subscript negative straight a end subscript superscript straight a square root of fraction numerator straight a minus straight x over denominator straight a plus straight x end fraction end root space dx space equals space straight a space straight pi.

95 Views

110.

Evaluate  integral subscript 0 superscript straight pi over 2 end superscript fraction numerator sin space straight x space plus space cos space straight x over denominator square root of sinx space cosx end root end fraction dx.

143 Views

Advertisement