Prove that: from Mathematics Integrals

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsLong Answer Type

111.

Evaluate: integral subscript 0 superscript straight pi over 4 end superscript space secx square root of fraction numerator 1 minus sin space straight x over denominator 1 plus sin space straight x end fraction end root dx.

93 Views

112.

Evaluate:  integral subscript 0 superscript straight a space sin to the power of negative 1 end exponent space open parentheses square root of fraction numerator straight x over denominator straight a plus straight x end fraction end root close parentheses dx.

109 Views

 Multiple Choice QuestionsShort Answer Type

113.

Prove that:  

209 Views

 Multiple Choice QuestionsLong Answer Type

114.

Evaluate: 
integral subscript 0 superscript straight pi over 2 end superscript fraction numerator dx over denominator 4 cosx plus 2 sinx end fraction.

99 Views

Advertisement
115.

Evaluate
integral subscript 0 superscript straight pi over 2 end superscript fraction numerator dx over denominator 2 space cosx space plus space 4 space sinx end fraction

122 Views

116.

Evaluate
integral subscript 0 superscript straight pi over 2 end superscript fraction numerator 1 over denominator sinx plus square root of 3 cosx end fraction dx

120 Views

 Multiple Choice QuestionsShort Answer Type

117.

Prove that:
integral subscript 0 superscript straight pi over 2 end superscript fraction numerator dx over denominator 9 plus 16 space cos squared straight x end fraction space equals space straight pi over 30

106 Views

Advertisement

118.

Prove that:
integral subscript 0 superscript straight pi over 4 end superscript fraction numerator sin space 2 straight theta space dθ over denominator sin to the power of 4 space straight theta space plus space cos to the power of 4 straight theta end fraction space equals space straight pi over 4


Let I = integral subscript 0 superscript straight pi over 4 end superscript fraction numerator sin space 2 straight theta over denominator sin to the power of 4 straight theta space plus space cos to the power of 4 straight theta end fraction dθ space equals space integral subscript 0 superscript straight pi over 4 end superscript fraction numerator 2 space sin space straight theta space cos space straight theta space dθ over denominator sin to the power of 4 straight theta space plus space cos to the power of 4 straight theta end fraction
         equals space integral subscript 0 superscript straight pi over 4 end superscript fraction numerator begin display style fraction numerator 2 space sin space straight theta space cosθ over denominator cos to the power of 4 straight theta end fraction end style over denominator begin display style fraction numerator sin to the power of 4 straight theta over denominator cos to the power of 4 straight theta end fraction end style plus begin display style fraction numerator cos to the power of 4 straight theta over denominator cos to the power of 4 straight theta end fraction end style end fraction dθ space equals space integral subscript 0 superscript straight pi over 4 end superscript fraction numerator 2 space tanθ space sec squared straight theta over denominator tan to the power of 4 straight theta plus 1 end fraction dθ
Put tan2 θ = t,    ∴ 2 tan θ sec2 θ dθ = dt      When θ = 0, t = tan2 0 = 0
When straight theta space equals space straight pi over 4 comma space space space straight t space space equals tan squared straight pi over 4 space equals space 1
therefore       straight I space equals space integral subscript 0 superscript 1 fraction numerator dt over denominator straight t squared plus 1 end fraction space equals space left square bracket tan to the power of negative 1 end exponent straight t right square bracket subscript 0 superscript 1 space equals space tan to the power of negative 1 end exponent 1 space minus space tan to the power of negative 1 end exponent 0 space equals space straight pi over 4 minus 0 space equals space straight pi over 4

109 Views

Advertisement
Advertisement
119.

Prove that:
integral subscript 0 superscript straight pi over 2 end superscript fraction numerator sin space 2 straight ϕ space dϕ over denominator sin to the power of 4 straight ϕ plus cos to the power of 4 straight ϕ end fraction space equals space straight pi over 2

113 Views

120.

Prove that:
integral subscript 0 superscript straight pi over 2 end superscript fraction numerator cosx space dx over denominator left parenthesis 1 plus sin space straight x right parenthesis space left parenthesis 2 plus sinx right parenthesis end fraction space equals space log space 4 over 3


128 Views

Advertisement