If ft = ∫- tte- x2dx, then limt→∞ft = ?
1
12
0
- 1
∫02πsin6xcos5xdx = ?
2π
π2
- π
C.
Let I = ∫02πsin6xcos5xdx I = 2∫0πsin6xcos5xdx ∵f(2π - x) = fxLet f(x) = sin6xcos5x ∵f(π - x) = - fxfπ - x = sin6π - xcos5π - x = sin6x- cos5x = - sin6xcos5x = - fx I = 0
If ∫ex1 - sinx1 - cosxdx = fx + constant, then f(x) is equal to
excotx2 + c
e-xcotx2 + c
- excotx2 + c
- e- xcotx2 + c
If In = ∫xnecxdx for n ≥ 1, then cIn + n . In - 1 is equal to
xnecx
xn
ecx
xn + ecx
If ∫ex1 + x . sec2xexdx = f(x) + constant, then f(x) is equal to
cosxex
sinxex
2tan-1x
tanxex
∫01x321 - xdx is equal to
π6
π9
π12
π16
∫- π2π2sinxdx is equal to
2
π
∫dxx + 14x + 3 = ?
tan-14x + 3 + c
3tan-14x + 3 + c
2tan-14x + 3 + c
4tan-14x + 3 + c
∫2 - sin2x1 - cos2xexdx = ?
- cotx ex + c
cotx ex + c
2cotx ex + c
- 2cotx ex + c
If In = ∫sinnxdx, then nIn - n - 1In - 2 = ?
sinn - 1xcosx
cosn - 1xsinx
- sinn - 1xcosx
- cosn - 1xsinx