If In = ∫0π4tanndθ for n = 1, 2, 3 . . . , then In + 1 + I n + 1 = ?
0
1
1n
1n + 1
C.
Given, In = ∫0π4tanndθ ∴ In + 1 + I n + 1 = ∫ 0π4tann - 1θdθ + ∫ 0π4tann - 1θdθ= ∫ 0π4tann - 1θ1 + tan2θdθ= ∫ 0π4 sec2θtann - 1θdθPut tanθ = ϕ ⇒ sec2θdθ = dϕ∴ In + 1 + I n + 1 = ∫01ϕn - 1dϕ= ϕnn10 = 1n
Let f0 = 1, f0.5 = 54, f1 = 2, f1.5 = 134, and f2 = 5. Using Simson's rule,∫02fxdx = ?
143
76
149
79
∫dxx24 + x2 =
144 + x2 + C
- 144 + x2 + C
- 14x4 + x2 + C
94x4 + x2 + C
∫sec2xcsc4xdx = ?
4
3
2
∫dxx - x2 = ?
2sin-1x + C
2xsin-1x + C
sin-1x + C
If a > 0, then ∫- ππsin2x1 + axdx = ?
π2
π
2π2
aπ
The value of the integral ∫04dx1 + x2 obtained by using trapezoidalrule with h = 1 is
6385
tan-14
10885
11385
Let A = 2eiπ- 1i2012, C= ddx1xx = 1,D = ∫e21dxx. If the sum of two roots of the equation Ax3 + Bx2 + Cx - D = 0 is equal to zero, then B is equal to
- 1
∫ ex2 + sin2x1 + cos2xdx = ?
excotx + C
2exsec2x +C
excos2x + C
extanx + C
If ∫ x - sinx1 + cosxdx = xtanx2 + plogsecx2 + C, then p = ?
- 4
- 2