∫π4π4x + π42 - cos2xdx is equal to
8π35
2π39
4π239
π263
∫5x + 3x2x2 - 2dx = ?
32x + 1322log2 - x2 + x + C
32x + 1342logx + 2x - 2 + C
32x + 1342logx - 2x + 2 + C
35x + 532logx + 2x - 2 + C
C.
Let I = ∫5x + 3x2x2 - 2dxNow, consider 5x + 3x2x2 - 2 and take x2 = y Then,5x + 3x2x2 - 2 = 5y + 3yy - 2 iNow, put 5y + 3yy - 2 = Ay + By - 2 ii⇒ 5y + 3 = y - 2A + yB⇒5y + 3 = yA + B - 2AOn compairing, we getA + B = 5 and 3 = - 2A⇒ A = - 32 and B = 132Thus, 5x2 + 3x2x2 - 2 = - 32 1x2 + 132 1x2 - 2Using Eqs i and iiHence, I = - 32∫dxx2 + 132∫dxx2 - 2= - 32- 1x + 132 × 122logx - 2x + 2 + C= 32x + 1342logx - 2x + 2 + C
If y = tan-1x1 + 1 - x2 + sin2tan-11 - x1 + x, then dydx = ?
1 - 2x21 - x2
1 - 2xx1 - x2
2x + 1x1 - x
2 - x21 - x2
If ∫010fxdx= 5, then ∑k = 110∫01fk - 1 + xdx = ?
50
10
5
20
∫xe - 1 + ex - 1xe + exdx
- 1elogxe + ex + C
- elogxe + ex + C
1elogxe + ex + C
elogxe + ex + C
∫x+ sinx1 + cosxdx = ?
xtanx2 + C
xsinx2 + cosx2 + C
xtanx2 + secx2 + C
If In = ∫sinnxcosxdx, then In = ?
- 2n - 1cosn - 1x - In - 2
2n - 1cosn - 1x + In - 2
- 2n + 1sinn - 1x - In - 2
- 2n + 1cosn - 1x - In - 2
The integral ∫02x - 1 - xdx = ?
Let [t] denote the greatest integer less than or equal to t. Then the value of ∫122x - 3xdx is
Area enclosed by 0 ≤ y ≤ x2 + 1, 0 ≤ y ≤ x + 1, 12 ≤ x ≤ 2 is :
112
16
1
13