Evaluate ∫ - πππ - xdx
π2
π22
π23
π24
215 + 518 has integral terms find least value of n is
256
257
258
259
If ∫sin-1x1 + xdx = Axtan-1x + Bx + C, where C is a constant of integration, then ordered pair Ax, Bx can be :
x - 1, x
x - 1, - x
x + 1, x
x + 1, - x
If the value of the integral ∫012x21 - x232dx x = sinθ; dx = cosθdθ
23 + π
23 - π
32 + π
32 - π
B.
k6 = ∫012x21 - x232dx x = sinθ; dx = cosθdθ⇒ k6 = ∫0π6sin2θ1 - sin2θ32 . cosθdθ⇒ k6 = ∫0π6sin2θcos3θ . cosθdθ⇒ k6 = ∫0π6tan2θdθ = ∫0π6sec2θ - 1dθ⇒ k6 = tanθ - θ0π6= 13 - π6= 23 - π6k = 23 - π
The total number of 3-digit numbers, whose sum of digits is 10, is.......
Let S be the set of all integer solutions, (x, y, z), of the system of equationsx – 2y + 5z = 0– 2x + 4y + z = 0– 7x + 14y + 9z = 0Such that 15 < x2 + y2 + z2 < 150. Then, the number of elements in the set S is equal to.
Let fx = x - 2 and gx = ffx, x ∈ 0, 4. Then∫03gx - fxdx = ?
0
12
32
1
The integral ∫xxsinx + cosx2dx = ? Where Cis a constant of integration :
tanx + xsecxxsinx + cosx + C
tanx - xsecxxsinx + cosx + C
secx + xtanxxsinx + cosx + C
secx - xsecxxsinx + cosx + C
Let [t] denote the greatest integer ≤ t. Then the equation in x, [x]2 + 2[x + 2] – 7 = 0 has :
no integral solution
infinitely many solutions
exactly two solutions
exactly four integral solutions
Let fx = ∫x1 + x2dx x ≥ 0. Then f3 - f1 = ?
- π6 + 12 + 34
- π12 + 12 + 34
π12 + 12 - 34
π6 + 12 - 34