The integral ∫π6π3tan3x . sin23x2se

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsMultiple Choice Questions

1011.

Let f be the twice differential function on 1, 6. If f2 = 8, f'2 = 5,f'x  1 and f''x  4, for all x  1, 6, then :

  • f5 + f'5  28

  • f'5 + f''5  20

  • f5  10

  • f5 + f'5  26


 Multiple Choice QuestionsShort Answer Type

1012.

If the system of equations

x – 2y + 3z = 9

2x + y + z = b

x – 7y + az = 24,

has infinitely many solutions, then a – b is equal to :


 Multiple Choice QuestionsMultiple Choice Questions

Advertisement

1013.

The integral π6π3tan3x . sin23x2sec2xsin23x + 3tanxsin6xdx = ?

  • - 19

  • 92

  • - 118

  • 718


C.

- 118

π6π3tan3x . sin23x2sec2xsin23x + 3tanxsin6xdxπ6π3ddxtan4x 2sin43x + tan4x . ddxsin43x 2 = 12π6π3ddxtan4xsin43xdx= 12tan4xsin43xπ6π3= 1232 × 0 - 134= - 12 × 19= - 118


Advertisement

 Multiple Choice QuestionsShort Answer Type

1014.

Let {x} and [x] denote the fractional part of x and the greatest integer r  x respectively of a real number x. if 0nxdx and 10(n2  n), (n  N, n > 1) are three consecutive terms of a G.P. then n is equal to ......


Advertisement
1015.

If a = 2i^ + j^ + 2k^, then the value of i^ × a × i^2 + j^a × j^2 + k^ × a × k^2 = ?


 Multiple Choice QuestionsMultiple Choice Questions

1016.

If e2x + 2ex - e - x - 1eex +e - xdx = gxeex + e - x +C,  where c is a constant of integration, then g(0) is 

  • 1

  • e

  • e2

  • 2


1017.

The value of   - π2π211 +esinxdx is :

  • π4

  • π2

  • 3π2

  • π


1018.

If cosθ5 + 7sinθ - 2cos2θ = AlogeBθ + C, where C is a constant of integration, then BθAcan be:

  • 2sinθ + 15sinθ + 3

  • 52sinθ + 1sinθ + 3

  • 2sinθ + 1sinθ + 3

  • 5sinθ + 32sinθ + 1 


Advertisement
1019.

The general solution of the differential equation

1 + x2 + y2 +x2y2 + xydydx = 0 where C is constant of integration 

  • 1 + y2 + 1 + x2 = 12loge1 + x2 - 11 + x2 +1 +C

  • 1 + y2 + 1 + x2 = 12loge1 + x2 +11 +x2 - 1 +C

  • 1 + y2 - 1 + x2 = 12loge1 + x2 -11 +x2 + 1  +C

  • 1 + y2 - 1 + x2 = 12loge1 + x2 +11 +x2 - 1  +C


1020.

If I1 = 011 - x50100dx and I2 = 011 - x50101dx I2  = αI1 Then α = ?

  • 50495050

  • 50515050

  • 50505051

  • 50505049


Advertisement