Find the co-ordinates of a point equidistant from points A (a, 0

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

31. Verify the following : (0, 7, -10), (1, 6, -6) and ( 4, 9, -6) are the vertices of an isosceles triangle.
119 Views

32. Show that A (a, b, c), B (b, c, a) and C (c, a, b) are vertices of an equilateral triangle.
96 Views

33. Show that A (6, 10, 10), B (1, 0, -5) and C (6, -10, 0) are the vertices of a right angled triangle.
94 Views

34.

Verify the following:
(0, 7, 10), (-1, 6, 6) and (-4, 9, 6) are the vertices of a right angled triangle. 

113 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

35. Verify the following:
(-1, 2, 1), (1, -2, 5), (4, -7, 8) and (2, -3, 4) are the vertices of a parallelogram.
126 Views

36. Verify the following:
Show that A (6, 10, 10), B (1, 0, -5), C (6, -10, 0) and D (11, 0, 15) are the vertices of a rectangle.
103 Views

37. Show that points A (1, 2, 3), B (-1, -2, -1), C (2, 3, 2) and D (4, 7, 6) are the vertices of a parallelogram ABCD, but it is not a rectangle.
100 Views

 Multiple Choice QuestionsShort Answer Type

38.

Show that the points:
P (-1,-6, 10), Q (1, -3, 4), R (-5, -1, 1) and S (-7, -4, 7) are the vertices of a rhombus.

123 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

39. Show that the points:
A (-2, 6, -2), B (0, 4, -1), C (-2, 3, 1) and D (-4, 5, 0) are the vertices of a square.
86 Views

 Multiple Choice QuestionsShort Answer Type

Advertisement

40. Find the co-ordinates of a point equidistant from points A (a, 0, 0), B (0, b, 0), C (0, 0, c) and O (0, 0, 0).


Let P (x, y, z) be the required point and
     O (0, 0, 0), A (a, 0, 0), B (0, b, 0) and C (0, 0, c) be the given points.
∴                                      <pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(56): mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(110): com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre>
                                         open vertical bar PO close vertical bar space equals space open vertical bar PA close vertical bar
rightwards double arrow            square root of left parenthesis straight x minus 0 right parenthesis squared plus left parenthesis straight y minus 0 right parenthesis squared plus left parenthesis straight z minus 0 right parenthesis squared end root space equals space square root of left parenthesis straight x minus straight a right parenthesis squared plus left parenthesis straight y minus 0 right parenthesis squared plus left parenthesis straight z minus 0 right parenthesis squared end root
rightwards double arrow                                   space space space space straight x squared plus straight y squared plus straight z squared space equals space straight x squared plus straight y squared plus straight z squared minus 2 ax plus straight a squared
rightwards double arrow                                        2 ax space equals space straight a squared space rightwards double arrow space straight x space equals space straight a over 2
                                                  open vertical bar PO close vertical bar space equals space open vertical bar PB close vertical bar
rightwards double arrow             square root of left parenthesis straight x minus 0 right parenthesis squared plus left parenthesis straight y minus 0 right parenthesis squared plus left parenthesis straight z minus 0 right parenthesis squared end root space equals space square root of left parenthesis straight x minus 0 right parenthesis squared plus left parenthesis straight y minus straight b right parenthesis squared plus left parenthesis straight z minus 0 right parenthesis squared end root
rightwards double arrow                              straight x squared plus straight y squared plus straight z squared space equals space straight x squared plus straight y squared plus straight z squared minus 2 by plus straight b squared space rightwards double arrow space 2 by space equals space straight b squared space rightwards double arrow space straight y space equals space straight b over 2
Also,                                           space space space space space space open vertical bar PO close vertical bar space equals space open vertical bar PC close vertical bar
rightwards double arrow          square root of left parenthesis straight x minus 0 right parenthesis squared plus left parenthesis straight y minus 0 right parenthesis squared plus left parenthesis straight z minus 0 right parenthesis squared end root space equals space square root of left parenthesis straight x minus 0 right parenthesis squared plus left parenthesis straight y minus 0 right parenthesis squared plus left parenthesis straight z minus straight c right parenthesis squared end root
rightwards double arrow                                 space space space straight x squared plus straight y squared plus straight z squared space equals space straight x squared plus straight y squared plus straight z squared minus 2 cz plus straight c squared space rightwards double arrow space 2 cz space equals space straight c squared space rightwards double arrow space straight z space equals space straight c over 2
Hence, the required point is straight P space left parenthesis straight x comma space straight y comma space straight z right parenthesis space left right arrow space open parentheses straight a over 2 comma space straight b over 2 comma space straight c over 2 close parentheses

166 Views

Advertisement
Advertisement