Find the lengths of the medians of the triangle with vertices A

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

71. Find the co-ordinates of the point which divides the line segment formed by joining the points (- 2, 3, 5) and (1, -4, 6) in the ratio of 2 : 3  externally.
117 Views

72. Given that P (3, 2, -4), Q (5, 4, -6) and R (9, 8, -10) are collinear. Find the ratio in which Q divides PR. 
176 Views

73. Using section formula, prove that the three points (-4, 6, 10), (2, 4, 6) and (14, 0, - 2) are collinear. Also find the ratio in which point B divides the join of A and C.
719 Views

74. Find the co-ordinates of the points of trisection of the line segment joining the points P (3, 2, - 1) and Q (1, 2, 5).
125 Views

Advertisement
75.

Find the ratio in which the YZ-plane divides the line segment formed by joining the points (–2, 4, 7) and (3, –5, 8).

400 Views

76.

Find the ratio in which the join of P (2, 1, -1) and Q (3, 2, 4) is divided by XY-plane.

120 Views

77. A point R with x-coordinate 4 lies on the line joining the points P (2, - 3, 4) and Q (8, 0, 10). Find the co-ordinates of point R.
117 Views

 Multiple Choice QuestionsLong Answer Type

Advertisement

78. Find the lengths of the medians of the triangle with vertices A (0, 0, 6), B (0, 4, 0) and C (6, 0, 0).


straight A space left parenthesis 0 comma space 0 comma space 6 right parenthesis space left right arrow space left parenthesis straight x subscript 1 comma space straight y subscript 1 comma space straight z subscript 1 right parenthesis
straight B space left parenthesis 0 comma space 4 comma space 0 right parenthesis space left right arrow space left parenthesis straight x subscript 2 comma space straight y subscript 2 comma space straight z subscript 2 right parenthesis
straight C space left parenthesis 6 comma space 0 comma space 0 right parenthesis space left right arrow space left parenthesis straight x subscript 3 comma space straight y subscript 3 comma space straight z subscript 3 right parenthesis
D is mid-point of BC

rightwards double arrow D is open parentheses fraction numerator straight x subscript 2 plus straight x subscript 3 over denominator 2 end fraction comma space fraction numerator straight y subscript 2 plus straight y subscript 3 over denominator 2 end fraction comma space fraction numerator straight z subscript 2 plus straight z subscript 3 over denominator 2 end fraction close parentheses space left right arrow space open parentheses fraction numerator 0 plus 6 over denominator 2 end fraction comma space fraction numerator 4 plus 0 over denominator 2 end fraction comma space fraction numerator 0 plus 0 over denominator 2 end fraction close parentheses
                           = (3, 2, 0)
                                                                     
Using distance formula, we have
              AD equals square root of left parenthesis 0 minus 3 right parenthesis squared plus left parenthesis 0 minus 2 right parenthesis squared plus left parenthesis 6 minus 0 right parenthesis squared end root space equals space square root of 9 plus 4 plus 36 end root space equals space square root of 49 space equals space 7
E is the mid-point of CA.
rightwards double arrow                           straight E space equals space open parentheses fraction numerator straight x subscript 3 plus straight x subscript 1 over denominator 2 end fraction comma space fraction numerator straight y subscript 3 plus straight y subscript 1 over denominator 2 end fraction comma space fraction numerator straight z subscript 3 plus straight z subscript 1 over denominator 2 end fraction close parentheses space left right arrow space open parentheses fraction numerator 6 plus 0 over denominator 2 end fraction comma space fraction numerator 0 plus 0 over denominator 2 end fraction comma space fraction numerator 0 plus 6 over denominator 2 end fraction close parentheses space equals space left parenthesis 3 comma space 0 comma space 3 right parenthesis
∴                       BE space equals space square root of left parenthesis 0 minus 3 right parenthesis squared plus left parenthesis 4 minus 0 right parenthesis squared plus left parenthesis 0 minus 3 right parenthesis squared end root space equals space square root of 9 plus 16 plus 9 end root space equals space square root of 34

F is the mid-point of AB rightwards double arrow F is <pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(56): mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(110): com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre>
                           <pre>uncaught exception: <b>mkdir(): Permission denied (errno: 2) in /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php at line #56mkdir(): Permission denied</b><br /><br />in file: /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php line 56<br />#0 [internal function]: _hx_error_handler(2, 'mkdir(): Permis...', '/home/config_ad...', 56, Array)
#1 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/util/sys/Store.class.php(56): mkdir('/home/config_ad...', 493)
#2 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/FolderTreeStorageAndCache.class.php(110): com_wiris_util_sys_Store->mkdirs()
#3 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/RenderImpl.class.php(231): com_wiris_plugin_impl_FolderTreeStorageAndCache->codeDigest('mml=<math xmlns...')
#4 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/lib/com/wiris/plugin/impl/TextServiceImpl.class.php(59): com_wiris_plugin_impl_RenderImpl->computeDigest(NULL, Array)
#5 /home/config_admin/public/felixventures.in/public/application/css/plugins/tiny_mce_wiris/integration/service.php(19): com_wiris_plugin_impl_TextServiceImpl->service('mathml2accessib...', Array)
#6 {main}</pre>
168 Views

Advertisement
Advertisement

 Multiple Choice QuestionsShort Answer Type

79. A (3, 2, 0), B (5, 3, 2) and C (-9, 6, -3) are the vertices of a triangle ABC. The bisector AD of ∆ BAC meets BC at D. Find the co-ordinates of D.
1213 Views

80. The co-ordinates of the mid-point C of a line segment AB are (-1, -2, 1). If the co-ordinates of point A are (2, 1, -3), find the co-ordinates of B.
93 Views

Advertisement