Prove the following identity: from Mathematics Introduction to

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

371. Prove the following identity:
fraction numerator sinA minus sinB over denominator cosA plus cosB end fraction plus fraction numerator cosA minus cosB over denominator sinA plus sinB end fraction equals 0.
108 Views

372. Prove the following identity:
tan squared straight A minus tan squared straight B space equals space fraction numerator sin squared straight A minus sin squared straight B over denominator cos squared straight A cross times cos squared straight B end fraction.

117 Views

373. Prove the following identity:
left parenthesis secA minus tanA right parenthesis squared space left parenthesis 1 plus sinA right parenthesis space equals space 1 minus space sinA.


109 Views

374. Prove the following identity:
sec to the power of 6 straight theta space equals space tan to the power of 6 straight theta space plus space 3 space tan space straight theta. space secθ plus 1



103 Views

Advertisement
375. Prove the following identity:
left parenthesis 1 plus tan squared straight theta right parenthesis plus open parentheses 1 plus fraction numerator 1 over denominator tan squared straight theta end fraction close parentheses space equals fraction numerator 1 over denominator sin squared straight theta minus sin to the power of 4 straight theta end fraction




628 Views

376. Prove the following identity:
left parenthesis 1 plus tanA. tanB right parenthesis squared plus left parenthesis tanA minus tanB right parenthesis squared space equals sec squared straight A. space sec squared straight B.






93 Views

377. Prove the following identity:
cotθ minus tanθ space equals space fraction numerator 2 space cos squared straight theta minus 1 over denominator sinθ minus cosθ end fraction.







114 Views

378. Prove the following identity:
tan squared straight theta plus cot squared straight theta plus 2 space equals space sec squared straight theta. space cosec squared straight theta.








95 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

Advertisement

379. Prove the following identity:
left parenthesis 1 plus cotA plus tanA right parenthesis space left parenthesis sinA minus cosA right parenthesis space equals space sinA. space tanA minus space cotA. space cosA.










L.H.S. = (1+ cot A + tan A) (sin A - cos A)
equals open parentheses 1 plus cosA over sinA plus sinA over cosA close parentheses space left parenthesis sinA minus cosA right parenthesis
equals space open parentheses 1 plus fraction numerator cos squared straight A plus sin squared straight A over denominator sinA space cosA end fraction close parentheses space left parenthesis sinA minus cosA right parenthesis
equals open parentheses 1 plus fraction numerator 1 over denominator sinA space cosA end fraction close parentheses space left parenthesis sinA space minus space cosA right parenthesis
equals space open parentheses fraction numerator sinA. space cosA space plus 1 over denominator sinA space cosA end fraction close parentheses space left parenthesis sinA space minus space cosA right parenthesis
equals space fraction numerator left parenthesis sinA minus cosA right parenthesis space left parenthesis 1 plus sinA space cosA right parenthesis over denominator sinA space cosA end fraction
straight R. straight H. straight S. space equals space sinA. space tanA space minus space cotA space cosA
equals space sinA. space sinA over cosA minus cosA over sinA. cosA
equals space fraction numerator sin squared straight A over denominator cosA end fraction minus fraction numerator cos squared straight A over denominator sinA end fraction equals fraction numerator sin cubed straight A minus cos cubed straight A over denominator sinA space cosA end fraction
equals space fraction numerator left parenthesis sinA minus cosA right parenthesis space left parenthesis sin squared straight A plus cos squared straight A plus sinA. space cosA right parenthesis over denominator sinA. space cosA end fraction
equals space fraction numerator left parenthesis sinA minus cosA right parenthesis left parenthesis 1 plus sinA space cosA right parenthesis over denominator sinA. cosA end fraction

L.H.S. = R.H.S.
Hence, (1 + cot A + tan A) (sin A - cos A) = sin A . tan A - cot A . cos A Proved

519 Views

Advertisement

 Multiple Choice QuestionsShort Answer Type

380. If 7 sin2θ + 3cos2θ = 4, show that tanθ space equals space fraction numerator 1 over denominator square root of 3 end fraction.
235 Views

Advertisement