Prove that: from Mathematics Introduction to Trigonometry

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

381. Prove that: sinθ (1 + tanθ) + cosθ (1 + cot θ) = secθ + cosecθ
89 Views

Advertisement

382.

Prove that:
sec squared straight theta minus fraction numerator sin squared straight theta minus 2 sin to the power of 4 straight theta over denominator 2 space cos to the power of 4 straight theta space minus cos squared straight theta end fraction equals 1


straight L. straight H. straight S. space equals space sec squared straight theta minus fraction numerator sin squared straight theta minus 2 sin to the power of 4 straight theta over denominator 2 cos to the power of 4 straight theta minus cos squared straight theta end fraction
equals space sec squared straight theta minus fraction numerator sin squared straight theta space left parenthesis 1 minus 2 sin squared straight theta right parenthesis over denominator cos squared straight theta left parenthesis 2 cos squared straight theta minus 1 right parenthesis end fraction
equals space sec squared straight theta space minus space fraction numerator sin squared straight theta open square brackets 1 minus 2 open parentheses 1 minus cos squared straight theta close parentheses close square brackets over denominator cos squared straight theta space left parenthesis 2 cos squared straight theta minus 1 right parenthesis end fraction
equals space sec squared straight theta space minus tan squared straight theta fraction numerator left parenthesis 1 minus 2 plus 2 cosθ right parenthesis over denominator 2 space cosθ minus 1 end fraction
space equals space sec squared straight theta space minus tan squared straight theta space open parentheses fraction numerator 2 cos squared straight theta minus 1 over denominator 2 cos squared straight theta minus 1 end fraction close parentheses
equals space sec squared straight theta space minus space tan squared straight theta space equals space 1 space equals space straight R. straight H. straight S.
86 Views

Advertisement

 Multiple Choice QuestionsLong Answer Type

383.

If fraction numerator tan space straight A over denominator tan space straight B end fraction equals straight n space and space fraction numerator sin space straight A over denominator sin space straight B end fraction equals straight m comma then show that cos squared straight A space equals space fraction numerator straight m squared minus 1 over denominator straight n squared minus 1 end fraction.

143 Views

384.

Prove the following identity:
fraction numerator 1 over denominator secθ minus tanθ end fraction minus 1 over cosθ space equals space 1 over cosθ minus fraction numerator 1 over denominator secθ plus tanθ end fraction.

120 Views

Advertisement
385.

Prove the following identity:
left parenthesis secθ minus cosecθ right parenthesis space left parenthesis 1 plus tanθ plus cotθ right parenthesis space equals space secθ. space tanθ space minus space cosecθ. space cotθ

90 Views

 Multiple Choice QuestionsShort Answer Type

386.

Prove the following identity:
fraction numerator tanθ plus secθ minus 1 over denominator tanθ minus secθ plus 1 end fraction equals fraction numerator 1 plus sinθ over denominator cosθ end fraction

102 Views

387.

Prove the following identity:
fraction numerator cosA over denominator 1 minus tanA end fraction minus fraction numerator sin squared straight A over denominator cosA minus sinA end fraction equals sinA plus cosA.


89 Views

388.

Prove the following identity:
sec A (1 - sin A) (sec A + tan A) = 1



93 Views

Advertisement
389.

Prove the following identity:
fraction numerator 1 over denominator secθ minus 1 end fraction plus fraction numerator 1 over denominator secθ plus 1 end fraction equals 2 space cosecθ. space cotθ.



136 Views

390.

Prove the following identity:
fraction numerator cosecθ plus cotθ over denominator cosecθ minus cotθ end fraction space equals space 1 plus 2 cot squared straight theta plus 2 cosecθ. space cotθ




93 Views

Advertisement