Prove that  from Mathematics Inverse Trigonometric Functions

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

51. Prove that cos to the power of negative 1 end exponent x minus cos to the power of negative 1 end exponent y equals cos to the power of negative 1 end exponent open square brackets x space y plus square root of left parenthesis 1 minus x squared right parenthesis left parenthesis 1 minus y squared right parenthesis end root close square brackets
96 Views

52. Prove that : tan to the power of negative 1 end exponent open parentheses 1 half close parentheses plus tan to the power of negative 1 end exponent open parentheses 1 over 8 close parentheses equals straight pi over 4
100 Views

53. Prove space that space tan to the power of negative 1 end exponent 1 fifth plus tan to the power of negative 1 end exponent 1 over 7 plus tan to the power of negative 1 end exponent 1 third plus tan to the power of negative 1 end exponent 1 over 8 equals straight pi over 4.
107 Views

Advertisement

54.

Prove that tan to the power of negative 1 end exponent space straight t plus tan to the power of negative 1 end exponent fraction numerator 2 space straight l over denominator 1 minus straight t squared end fraction equals tan to the power of negative 1 end exponent fraction numerator 3 straight t minus straight t cubed over denominator 1 minus 3 straight t squared end fraction. straight t greater than 0


straight L. straight H. straight S. equals tan to the power of negative 1 end exponent space straight t plus tan to the power of negative 1 end exponent fraction numerator 2 straight t over denominator 1 minus straight t squared end fraction equals tan to the power of negative 1 end exponent open square brackets fraction numerator straight t plus begin display style fraction numerator 2 straight t over denominator 1 minus straight t squared end fraction end style over denominator 1 minus straight t cross times begin display style fraction numerator 2 space straight t over denominator 1 minus straight t squared end fraction end style end fraction close square brackets
space space space space space space space space space space equals tan to the power of negative 1 end exponent open square brackets fraction numerator straight t left parenthesis 1 minus straight t squared right parenthesis plus 2 straight t over denominator 1 minus straight t squared minus 2 straight t squared end fraction close square brackets
space space space space space space space space space space equals tan to the power of 1 open square brackets fraction numerator straight t minus straight t cubed plus 2 straight t over denominator 1 minus 3 straight t squared end fraction close square brackets equals tan to the power of negative 1 end exponent open parentheses fraction numerator 3 straight t minus straight t cubed over denominator straight t minus 3 straight t squared end fraction close parentheses equals straight R. straight H. straight S.
104 Views

Advertisement
Advertisement
55.

Prove that tan to the power of negative 1 end exponent 1 fourth plus tan to the power of negative 1 end exponent 2 over 9 equals 1 half cos to the power of negative 1 end exponent 3 over 5

174 Views

56.

Prove that tan to the power of negative 1 end exponent 1 over 7 plus tan to the power of negative 1 end exponent 2 over 9 equals 1 half cos to the power of negative 1 end exponent 3 over 5

100 Views

 Multiple Choice QuestionsLong Answer Type

57.

Prove that cot to the power of negative 1 end exponent open parentheses fraction numerator ab plus 1 over denominator straight a minus straight b end fraction close parentheses plus cot to the power of negative 1 end exponent open parentheses fraction numerator bc plus 1 over denominator straight b minus straight c end fraction close parentheses plus cot to the power of negative 1 end exponent open parentheses fraction numerator ca plus 1 over denominator straight c minus straight a end fraction close parentheses equals 0

148 Views

 Multiple Choice QuestionsShort Answer Type

58. Prove that 2 space tan to the power of negative 1 end exponent 1 half plus tan to the power of negative 1 end exponent 1 over 7 equals tan to the power of negative 1 end exponent 31 over 17.
121 Views

Advertisement
59. Find the value of tan 1 half open square brackets sin to the power of negative 1 end exponent fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction plus cos to the power of negative 1 end exponent fraction numerator 1 minus straight y squared over denominator 1 plus straight y squared end fraction close square brackets comma space open vertical bar straight x close vertical bar less than 1 comma space straight y greater than 0 space and space straight x space straight y space less than 1
112 Views

60. Solve tan to the power of negative 1 end exponent 2 x plus tan to the power of negative 1 end exponent 3 x equals straight pi over 4.
152 Views

Advertisement