Prove that  from Mathematics Inverse Trigonometric Functions

Previous Year Papers

Download Solved Question Papers Free for Offline Practice and view Solutions Online.

Test Series

Take Zigya Full and Sectional Test Series. Time it out for real assessment and get your results instantly.

Test Yourself

Practice and master your preparation for a specific topic or chapter. Check you scores at the end of the test.
Advertisement

 Multiple Choice QuestionsShort Answer Type

51. Prove that cos to the power of negative 1 end exponent x minus cos to the power of negative 1 end exponent y equals cos to the power of negative 1 end exponent open square brackets x space y plus square root of left parenthesis 1 minus x squared right parenthesis left parenthesis 1 minus y squared right parenthesis end root close square brackets
96 Views

52. Prove that : tan to the power of negative 1 end exponent open parentheses 1 half close parentheses plus tan to the power of negative 1 end exponent open parentheses 1 over 8 close parentheses equals straight pi over 4
100 Views

53. Prove space that space tan to the power of negative 1 end exponent 1 fifth plus tan to the power of negative 1 end exponent 1 over 7 plus tan to the power of negative 1 end exponent 1 third plus tan to the power of negative 1 end exponent 1 over 8 equals straight pi over 4.
107 Views

54.

Prove that tan to the power of negative 1 end exponent space straight t plus tan to the power of negative 1 end exponent fraction numerator 2 space straight l over denominator 1 minus straight t squared end fraction equals tan to the power of negative 1 end exponent fraction numerator 3 straight t minus straight t cubed over denominator 1 minus 3 straight t squared end fraction. straight t greater than 0

104 Views

Advertisement
55.

Prove that tan to the power of negative 1 end exponent 1 fourth plus tan to the power of negative 1 end exponent 2 over 9 equals 1 half cos to the power of negative 1 end exponent 3 over 5

174 Views

56.

Prove that tan to the power of negative 1 end exponent 1 over 7 plus tan to the power of negative 1 end exponent 2 over 9 equals 1 half cos to the power of negative 1 end exponent 3 over 5

100 Views

 Multiple Choice QuestionsLong Answer Type

57.

Prove that cot to the power of negative 1 end exponent open parentheses fraction numerator ab plus 1 over denominator straight a minus straight b end fraction close parentheses plus cot to the power of negative 1 end exponent open parentheses fraction numerator bc plus 1 over denominator straight b minus straight c end fraction close parentheses plus cot to the power of negative 1 end exponent open parentheses fraction numerator ca plus 1 over denominator straight c minus straight a end fraction close parentheses equals 0

148 Views

 Multiple Choice QuestionsShort Answer Type

Advertisement

58. Prove that 2 space tan to the power of negative 1 end exponent 1 half plus tan to the power of negative 1 end exponent 1 over 7 equals tan to the power of negative 1 end exponent 31 over 17.


 L italic. H italic. S italic. italic space italic space 2 space tan to the power of negative 1 end exponent 1 half plus tan to the power of negative 1 end exponent 1 over 7
space space space space space space space space space space space equals tan to the power of negative 1 end exponent open square brackets fraction numerator 2 cross times begin display style 1 half end style over denominator 1 minus open parentheses begin display style 1 half end style close parentheses squared end fraction close square brackets plus tan to the power of negative 1 end exponent 1 over 7 space space space space space space space space space space space space space space space space space space space space space space space space open square brackets because space 2 space tan to the power of negative 1 end exponent space straight x space equals space tan to the power of negative 1 end exponent space fraction numerator 2 straight x over denominator 1 minus straight x squared end fraction close square brackets
space space space space space space space space space space space equals space tan to the power of negative 1 end exponent fraction numerator 1 over denominator 1 minus begin display style 1 fourth end style end fraction plus tan to the power of negative 1 end exponent 1 over 7 equals tan to the power of negative 1 end exponent 4 over 3 plus tan to the power of negative 1 end exponent 1 over 7
space space space space space space space space space space space equals space tan to the power of negative 1 end exponent open square brackets fraction numerator begin display style 4 over 3 plus 1 over 7 end style over denominator 1 minus begin display style 4 over 3 end style cross times begin display style 1 over 7 end style end fraction close square brackets equals space tan to the power of negative 1 end exponent open square brackets fraction numerator 28 plus 3 over denominator 21 minus 4 end fraction close square brackets equals tan to the power of negative 1 end exponent 31 over 17
space space space space space space space space space space space space equals space straight R. space straight H. space straight S.

121 Views

Advertisement
Advertisement
59. Find the value of tan 1 half open square brackets sin to the power of negative 1 end exponent fraction numerator 2 straight x over denominator 1 plus straight x squared end fraction plus cos to the power of negative 1 end exponent fraction numerator 1 minus straight y squared over denominator 1 plus straight y squared end fraction close square brackets comma space open vertical bar straight x close vertical bar less than 1 comma space straight y greater than 0 space and space straight x space straight y space less than 1
112 Views

60. Solve tan to the power of negative 1 end exponent 2 x plus tan to the power of negative 1 end exponent 3 x equals straight pi over 4.
152 Views

Advertisement